微積分

科號 161 共 2 頁第 1 頁 *請在試卷【答案卷】內作答

一. 填充題(每題八分)

- 1. Let $H(x) = \int_0^{x^2} \frac{dt}{1+t^3}$ and $L(x) = \int_0^x \frac{dt}{1+t^3}$, then $H'(2) L'(4) = \frac{\Box}{\Box}$.
- 2. Let $f(x) = x^{\frac{1}{x}}$ on (0, e), then f(x) is one-to-one. Let g(x) be the inverse function of f(x). Find $g'(\sqrt{2}) = 2$.
- 3. Let $y = \tan^{-1} \sqrt{x^3 + 1}$, then $\frac{dy}{dx} = \overline{\beta}$.
- $4. \int e^t \sin t dt = \underline{\qquad}.$
- 5. The interval of convergence (including endpoint(s) when valid) of $\sum_{n=1}^{\infty} \frac{n}{1+n^2} x^n = \underline{\mathbb{R}}$.

二. 計算與證明題(每題十二分)

- 1. Compute $\lim_{x\to\infty} \frac{1}{x \ln x} \int_1^x \ln t dt$.
- 2. Let $\sum_{n=1}^{\infty} a_n$ be a series of positive terms. Show that if $\sum_{n=1}^{\infty} a_n$ converges, then $\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$ converges.
- 3. Compute $\iint_R \frac{\sin x}{x} dxdy$ where R is the region bounded by the curves y = 0, y = x and x = 1.

and $\nu = (\frac{-4}{5}, \frac{3}{5})$ be two unit vectors at the point p = (1, 1). Suppose that $f'_{\mu}(p) = 3$ and $f'_{\nu}(p) = 2$. Find $\nabla f(p)$. (Note that $f'_{\mu}(p)$ and $f'_{\nu}(p)$ are the directional derivative of f at p in the direction μ and ν , respectively.)

4. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a differentiable function. Let $\mu = (\frac{3}{5}, \frac{4}{5})$

5. A snake is moving along the path $y = \frac{1}{x}$ in the x-y plane. Suppose that at time t > 0, its head is at the position $(4t, \frac{1}{4t})$

and its tail is at $(t, \frac{1}{t})$. For t > 0, find the time t such that the snake has shortest arc length.