微積分

_ 科號<u>003</u> 共 2 頁第 1 頁 <u>*請在試卷【答案卷】內作答</u>

- 一. 填充題(每題八分)
 - 1. Let $H(x) = \int_0^{x^2} \frac{dt}{1+t^3}$ and $L(x) = \int_0^x \frac{dt}{1+t^3}$, then $H'(b) L'(b^2) = \boxed{\blacksquare}$.
 - 2. Let f(x) be a continuous and decreasing function, and let g(x) be the inverse function of f. If f(2) = 1 and f(4) = 0 and $\int_{2}^{4} f(x)dx = 1$, then $\int_{0}^{1} g(x)dx = \underline{Z}$.
 - 3. Let $y = \tan^{-1} \sqrt{x^3 + 1}$, then $\frac{dy}{dx} = \overline{x}$.
 - 4. If f(x) is a continuous and decreasing function such that $\int_{2}^{4} f(x)dx = 1$, then which of the following is always true? $\frac{1}{(a) \ f(4)} > 0.1 \quad \text{(b) } f(4) < 0.2 \quad \text{(c) } f(2) < 0.3$ (d) f(2) > 0.4
 - 5. The interval of convergence (including end point(s) when valid) of $\sum_{n=1}^{\infty} (1+\frac{1}{n})^n (x+1)^n = \underline{\mathbb{Z}}$.
- 二. 計算與證明題(每題十二分)
 - 1. Compute $\lim_{x\to\infty} \frac{1}{x \ln x} \int_1^x \ln t dt$.
 - 2. Let $\sum_{n=1}^{\infty} a_n$ be a series of positive terms. Show that if $\sum_{n=1}^{\infty} a_n$ converges, then $\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$ converges.

3. Compute the volume of the solid T bounded above by $z = \sqrt{4 - x^2 - y^2}$ and below by $z = x^2 + y^2$.

微積分

- 4. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a differentiable function. Let $\mu = (\frac{12}{13}, \frac{-5}{13})$ and $\nu = (\frac{3}{5}, \frac{4}{5})$ be two unit vectors at the point p = (0, 1). Suppose that $f'_{\mu}(p) = 2$ and $f'_{\nu}(p) = -1$. Find $\nabla f(p)$. (Note that $f'_{\mu}(p)$ and $f'_{\nu}(p)$ are the directional derivative of f at p in the direction μ and ν , respectively).
- 5. A snake is moving along the path $y=\frac{1}{\sqrt{x}}$ in the x-y plane. Suppose that at time t>0, its head is at the position $(2t,\frac{1}{\sqrt{2t}})$ and its tail is at $(t,\frac{1}{\sqrt{t}})$. For t>0, find the time t such that the snake has shortest arc length.