八十八學年度轉學生入學考試 科目<u>微積分(一般) 共3頁第1頁*請在試卷【答案卷】內作答</u>

I. 填充題 (共有十個空格, 每一空格七分, 請將答案依 甲、乙、丙 ... 次序寫出, 不需演算過程)

1. Let
$$y = \sqrt[3]{(x+1)\sqrt[3]{(x^2+1)\sqrt[3]{(x^3+1)}}}$$
. Then $\frac{dy}{dx}|_{x=0}$

2. Evaluate the following:

(a)
$$\int_0^{\pi/4} \frac{\cos \theta}{\sqrt{2-\sin^2 \theta}} d\theta = \underline{\qquad Z}.$$

(b)
$$\lim_{n\to\infty} \frac{1}{n} \left[2^{\pi/n} + 2^{2\pi/n} + \dots + 2^{n\pi/n} \right] = \frac{\pi}{n}$$

(c)
$$\sum_{n=0}^{\infty} \left(1 - \frac{1}{n!}\right) \frac{1}{3^n} = \underline{\qquad \qquad }$$

3. Let L be the tangent line to the curve $x^3 + y^3 + 3xy^2 = 1$ at the point (0,1). Then the area of the triangle formed

4. The solution of the integral equation

$$f(x) = 1999 + \int_0^x f(t) \cos t \, dt$$

is given by f(x) =

國 立 清 華 大 学 命 趣 歌

八十八學年度轉學生入學考試 科目 微積分(一般) 共3頁第2頁 *請在試卷【答案卷】內作答

- 5. The length of the parabolic spiral $r = \theta^2$ $(\theta \ge 0)$ that lies inside the circle r = 4 is ______.
- 6. Suppose the temperature distribution of a ball centered at the origin is

$$T(x,y,z) = \frac{100}{1+x^2+y^2+z^2}, \qquad x^2+y^2+z^2 \le 20.$$

Then the direction (which is a unit vector) of greatest

increase of temperature at the point (1,2,3) is _______

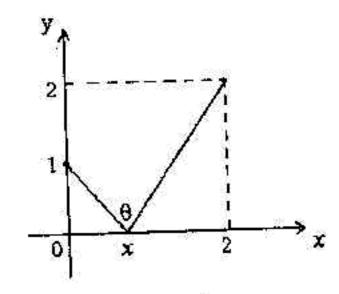
7. Suppose the partial derivatives of f(x,y) at the point of the semicircle $x = \cos t$, $y = \sin t$ $(0 \le t \le \pi)$ are

$$\frac{\partial f}{\partial x} = x - 2y$$
 and $\frac{\partial f}{\partial y} = y - 2x$.

Then on the semicircle, f has the maximum value at

$$(x,y) = \underline{\mathfrak{F}}$$

8. The value of x that maximizes the angle θ in the figure below is given by $x = \frac{2}{3}$.



國立清華大學命題紙

八十八學年度轉學生入學考試 科目 微微分(一般) 共 3 頁第 3 頁 *請在試卷【答案卷】內作答

Ⅱ.計算與證明題(共有兩大題、每大題 15 分、必需寫出

演算證明過程)

9. (15%) Let $\Omega = \{(x,y) | 0 \le y \le 1, x \ge y \text{ and } x^2 - y^2 \le 1\}$.

- (a) Sketch the region Ω .
- (b) Evaluate the double integral

$$\iint_{\Omega} xy \sin(x^2 - y^2) \, dx dy.$$

10. (15%)
Suppose $\{a_n\}_{n=1}^{\infty}$ is a sequence of positive numbers such that

$$|a_n-n^2| \le \ln n$$
 for all n .

- (a) Does $\lim_{n\to\infty} \frac{a_n}{n^2}$ exist? If so, find its value.
- (b) Does $\sum_{n=1}^{\infty} \frac{\ln n}{a_n}$ converge? Justify your answer.