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2. Evaluate the following:

mi4
{a)f s AT D
o x#i—siniﬂ
(b) lim 5 E’f“+2*'f“+---+2““‘m} = ]
A3 T

oYX (-g)F-—L

3. Let L be the tangent line to the curve 2% + 4% + 32572 =1
at the point ((,1). Then the area of the triangle formed

by L and the coordinate axes is B

4. The solution of the integral eguaticn

fiz) = 199’9+f: fltheostdt

is given by flr) = C
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5. The length of the parabolic spiral r = 8 {8 = 0)

that lies inside the circle r = 4 is ‘ﬁ

6. Suppose the temperature distribntion of a ball centered
at the origin is
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T{z,y, z)y=

Then the direction (which is a unit vector) of greatest

¥

increase of temperature at the point (1,2, 3) is

7. Suppose the partial derivatives of f{z,y)} at the
point of the semicircle & = gos?, y = sint (G<t<m)

are
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3 = F 2y and By i
Then on the semicircle, f has the maximum value at
()= F

8. The value of £ that maximizes the angle § in the figure
helow is given by & = #
3’.‘,‘
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9. (15%)
Let Q= {{z,3)[0 <y £ 1,22y and 2° — g* <1}

(a) Sketch the region {1.
(b} Evaluate the double integral

f f zysin{z? ~ y*) drdy.
2

0. (15%)
Suppnae {aa}52., is a sequence of positive numbers
such that
{uﬂ—n2| <lnn forall n,

(2) Does lim i—’; exist? I a0, find its value.

{b] Does E — mmwe:rge‘? Justify your answer.
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