科目 普通化學 類組別 A1

共11頁第一頁

一、單選題 (每題 2.5 分,答錯不倒扣)

元素原子量:H=1, D=2, C=12, N=14, O=16, F=19, Na=23, S=32, Cl=35.5, P=31, K=39, Ca=40, Mn=55, Fe=55.85, Br=80, Rb=85.5, I=127; Faraday constant=96500 Cmol-1, Gas constant R=8.314 J K⁻¹ mol⁻¹; 5.189×10¹⁹ eV K⁻¹ mol⁻¹ or 0.082 L atm K⁻¹ mol⁻¹, Plank Constant h=6.626× $10^{-34} \text{ J} \cdot \text{s}$

- [1]. For the reaction of sodium bromide with chlorine gas to form sodium chloride and bromine, the appropriate half-reactions are (ox = oxidation and re = reduction):
 - A) ox: $Cl_2 + 2e^- \rightarrow 2Cl^-$; re: $2Br^- \rightarrow Br_2 + 2e^-$

re:
$$2Br^- \rightarrow Br_2 + 2e^-$$

- B) ox: $2Br^{-} \rightarrow Br_{2} + 2e^{-}$; re: $Cl_{2} + 2e^{-} \rightarrow 2Cl^{-}$ C) ox: $Cl + e^{-} \rightarrow Cl^{-}$; re: $Br \rightarrow Br^{-} + e^{-}$

- D) ox: Br + 2e⁻ \rightarrow Br²⁻; re: 2Cl⁻ \rightarrow Cl₂ + 2e⁻
- E) ox: $2Na^+ + 2e^- \rightarrow 2Na$; re: $2Cl^- \rightarrow Cl_2 + 2e^-$
- [2]. The following reactions:

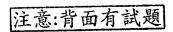
$$Pb^{2+} + 2I^{-} \rightarrow PbI_{2}$$

$$2Ce^{4+} + 2I^{-} \rightarrow I_2 + 2Ce^{3+}$$

$$HOAc + NH_3 \rightarrow NH_4^+ + OAc^-$$

are examples of

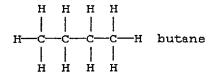
- A) acid-base reactions.
- B) unbalanced reactions.
- C) precipitation, acid-base, and redox reactions, respectively.
- redox, acid-base, and precipitation reactions, respectively.
- precipitation, redox, and acid-base reactions, respectively.
- [3]. What volume of 18.0 M sulfuric acid must be used to prepare 15.5 L of 0.195 M H₂SO₄?
 - A) 168 mL
 - B) 0.336 L
 - C) 92.3 mL
 - D) 226 mL
 - E) none of these
- [4]. Air has an average molar mass of 29.0 g/mol. The density of air at 1.00 atm and 30°C is
 - A) $29.0 \, \text{g/L}$
 - B) 40.0 g/mL
 - C) 1.17 g/L
 - $1.29 \, g/L$ D)
 - E) $12 \,\mathrm{g/L}$


科目_	普通化學	類組別	A1	共 <u>//</u> 頁	第 <u>2</u> 頁

[5]. Consider the following gas samples:

Sample A	Sample B
$S_2(g)$	$O_2(g)$
n = 1 mol	n = 2 mol
T = 800 K	T = 400 K
P = 0.20 atm	P = 0.40 atm

Which one of the following statements is false?


- A) The volume of sample A is twice the volume of sample B.
- B) The average kinetic energy of the molecules in sample A is twice the average kinetic energy of the molecules in sample B.
- C) The fraction of molecules in sample A having a kinetic energy greater than some high fixed value is larger than the fraction of molecules in sample B having kinetic energies greater than that same high fixed value.
- D) The mean square velocity of molecules in sample A is twice as large as the mean square velocity of molecules in sample B.
- E) Assuming identical intermolecular forces in the two samples, sample A should be more nearly ideal than sample B.
- [6]. Consider the following ground state electron configuration: 1s²2s²2p⁴. Which of the ions has this ground state electron configuration?
 - A) F⁻¹
 - B) N⁺¹
 - C) C⁻²
 - D) O⁻²
- [7]. Which ionization process requires the most energy?
 - A) $Al(g) \rightarrow Al^+(g) + e^-$
 - B) $Al^+(g) \to Al^{2+}(g) + e^-$
 - C) $Al^{2+}(g) \rightarrow Al^{3+}(g) + e^{-}$
 - D) $Al^{3+}(g) \to Al^{4+}(g) + e^{-}$
- [8]. Which type of spherical packing has the most unused space?
 - A) body-centered cubic
 - B) cubic closest-packed
 - C) cubic closest-packed and hexagonal closest-packed
 - D) simple cubic
- [9]. What is the edge length of a face-centered cubic unit cell made up of atoms having a radius of 200 pm?
 - A) 71 pm
 - B) 566 pm
 - C) 20 pm
 - D) 110 pm

共11頁第3頁 科目_普通化學 類組別 A1

- [10]. KBr crystallizes in a cubic unit cell with Br ions on each corner and each face. How many K⁺ ions and Br⁻ ions are in each unit cell of KBr?
 - A) 1 K⁺ ion and 1 Br⁻ ion
 - B) 2 K⁺ ions and 2 Br⁻ ions
 - C) 4 K⁺ ions and 4 Br⁻ ions
 - D) 8 K⁺ ions and 8 Br⁻ ions
- [11]. Which should be least soluble in water?

A)

B)

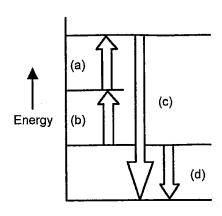
C)

D)

- [12]. A solution is prepared by dissolving 17.75 g sulfuric acid, H₂SO₄, in enough water to make 100.0 mL of solution. If the density of the solution is 1.1094 g/mL, what is the molality?
 - A) 0.1775 m H₂SO₄
 - B) 0.1810 m H₂SO₄
 - C) 1.810 m H₂SO₄
 - D) 1.940 m H₂SO₄
- [13]. In general, as the temperature increases, the solubility of gases in water _____ and the solubility of most solids in water _____.
 - A) decreases, decreases
 - B) decreases, increases
 - C) increases, decreases
 - D) increases, increases

|注意:背面有試題|

科目<u>普通化學</u>類組別<u>A1</u> 共<u>11</u>頁 第<u>4</u>頁


- [14]. A solution is prepared by dissolving 20.0 g of sucrose, $C_{12}H_{22}O_{11}$, in 250. g of water at 25°C. What is the vapor pressure of the solution if the vapor pressure of water at 25°C is 23.76 mm Hg?
 - A) 0.198 mm Hg
 - B) 20.5 mm Hg
 - C) 23.7 mm Hg
 - D) 24.0 mm Hg
- [15]. Assuming that sea water is a 3.5 wt % solution of NaCl in water, calculate its osmotic pressure at 20°C. The density of a 3.5% NaCl solution at 20°C is 1.023 g/mL.
 - A) 1.0 atm
 - B) 15 atm
 - C) 29 atm
 - D) 100 atm
- [16]. A solution of a nonelectrolyte solution contains 30.0 g of solute dissolved in 250.0g of water. The freezing point of the water is observed to be -2.50°C. The Kf for water is 1.86 °C/m and normal freezing point of water is 0.00°C. What is the molar mass of the substance?
 - A) 335 g/mol
 - B) 89.5 g/mol
 - C) 895 g/mol
 - D) 33.5 g/mol
- [17]-[18]. Arrows in the energy diagram below represent enthalpy changes occurring in the exothermic formation of a solution:

 $\Delta H_{\rm soln}$ = enthalpy of solution

 $\Delta H_{\text{solute-solute}}$ = enthalpy change involving solute-solute interactions

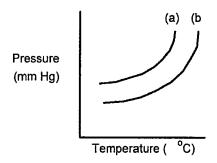
 $\Delta H_{\text{solute-solvent}}$ = enthalpy change involving solute-solvent interactions

 $\Delta H_{\text{solvent-solvent}}$ = enthalpy change involving solvent-solvent interactions

科目__普通化學___

類組別 A

共11頁第5頁


[17]. Which arrow represents ΔH_{soln} ?

- A) arrow (a)
- B) arrow (b)
- C) arrow (c)
- D) arrow (d)

[18]. Which arrow represents $\Delta H_{\text{solute-solvent}}$?

- A) arrow (a)
- B) arrow (b)
- C) arrow (c)
- D) arrow (d)

[19]. The following diagram shows a close-up view of the vapor pressure curves for a pure solvent and a solution containing a nonvolatile solute dissolved in this solvent.

Which curve is the solvent and what happens to the vapor pressure when the solute is dissolved in the solvent?

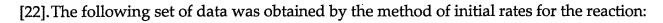
- A) Curve (a) is the solvent and the vapor pressure decreases.
- B) Curve (a) is the solvent and the vapor pressure increases.
- C) Curve (b) is the solvent and the vapor pressure decreases.
- D) Curve (b) is the solvent and the vapor pressure increases.

[20]. What is the mole fraction of oxygen in a gas mixture that is 27% oxygen and 73% nitrogen by volume?

- A) 0.24
- B) 0.27
- C) 0.32
- D) 0.37

科目 普通化學

類組別___


共11頁第6頁

[21]. A concentration-time study of the gas phase reaction 2 $A_3 \rightarrow 3$ A_2 produced the data in the table below.

Time (s)	$[A_3]$ (M)	$[A_2](M)$
0	4.00×10^{-4}	0
10	2.00×10^{-4}	3.00×10^{-4}
20	1.00×10^{-4}	4.50×10^{-4}
30	5.00×10^{-5}	?

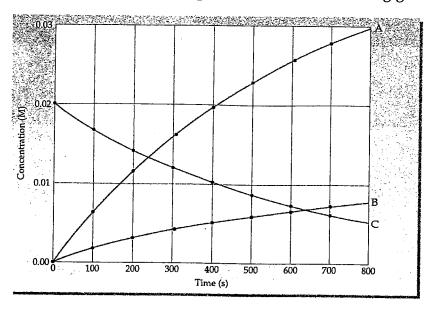
What is the concentration of A_2 after 30 seconds?

- A) 5.00×10^{-4} M
- B) 5.25×10^{-4} M
- C) 5.50×10^{-4} M
- D) $6.00 \times 10^{-4} \,\mathrm{M}$

$$BrO_3(aq) + 5 Br(aq) + 6 H(aq) \rightarrow 3 Br_2(aq) + 3 H_2O(l)$$
.

Calculate the initial rate when BrO_3^- is 0.30 M, Br^- is 0.050 M, and H^+ is 0.15 M.

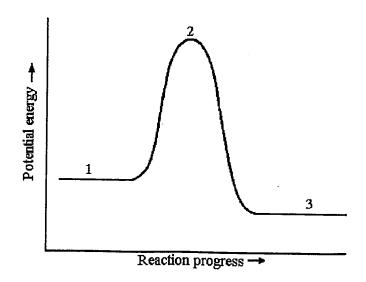
Expt	[BrO ₃ -] (M)	[Br-] (M)	[H+] (M)	Rate (M/s)
1	0.10	0.10	0.10	8.0×10^{-4}
2	0.20	0.10	0.10	1.6 x 10 ⁻³
3	0.20	0.15	0.10	2.4×10^{-3}
4	0.10	0.10	0.25	5.0 x 10 ⁻³
	•	I .		•


- A) 6.1×10^{-5} M/s
- B) 2.7×10^{-3} M/s
- C) 5.3×10^{-2} M/s
- D) 8.4×10^{-2} M/s

科目 普通化學

類組別___A1

共11頁第2頁


[23]. Shown is a concentration versus time plot for a reaction involving gases A, B, and C.

Which equation best represents the reaction?

- A) $4A(g) \rightarrow B(g) + 2C(g)$
- B) $4A(g) + B(g) \rightarrow 2C(g)$
- C) $2C(g) \rightarrow 4A(g) + B(g)$
- D) $2C(g) + B(g) \rightarrow 4A(g)$

[24]. Consider a reaction that occurs by the following one-step mechanism: $A_2 + B_2 \rightarrow 2$ AB The potential energy profile for this reaction is shown below.

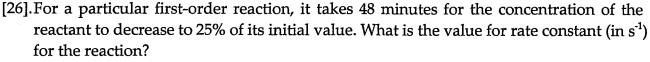
What is the species present at reaction stage 1?

- A) an intermediate
- B) a product
- C) a reactant
- D) a transition state

科目___普通化學____類組別___

A1

共11.頁 第8頁


[25]. The following set of data was obtained by the method of initial rates for the reaction:

$$2 \operatorname{HgCl}_2(aq) + \operatorname{C}_2\operatorname{O}_4^{2-}(aq) \to 2 \operatorname{Cl}^-(aq) + 2 \operatorname{CO}_2(g) + \operatorname{Hg}_2\operatorname{Cl}_2(s)$$

What is the rate law for the reaction?

[HgCl ₂] (M)	[C ₂ O ₄ ² -] (M)	Rate (M/s)
0.10	0.10	1.3 × 10 ⁻⁷
0.10	0.20	5.2×10^{-7}
0.20	0.20	1.0 × 10-6

- A) Rate = $k[HgCl_2][C_2O_4^{2-}]^{-2}$
- B) Rate = $k[HgCl_2][C_2O_4^{2-}]^{-1}$
- C) Rate = $k[HgCl_2]^2[C_2O_4^2]$
- D) Rate = $k[HgCl_2][C_2O_4^{2-}]^2$

- A) $1.0 \times 10^{-4} \text{ s}^{-1}$
- B) $4.8 \times 10^{-4} \, \text{s}^{-1}$
- C) $6.0 \times 10^{-3} \text{ s}^{-1}$
- D) $2.9 \times 10^{-2} \text{ s}^{-1}$

[27]. The reaction: 2 HI \rightarrow H₂ + I₂, is second order and the rate constant at 800 K is 9.70 \times 10⁻² M^{-1} s⁻¹. How long will it take for 8.00×10^{-2} mol/L of HI to decrease to one-fourth of its initial concentration?

- A) 0.619 s
- B) 124 s
- C) 387 s
- D) 429 s

[28]. What are the coefficients in front of NO_3 (aq) and Cu(s) when the following redox equation is balanced in an acidic solution:

 $NO_3(aq) + Cu(s) \rightarrow NO(q) + Cu^{2+}(aq)$?

- A) 2, 3
- B) 2, 6
- C) 3, 4
- D) 3, 6

台灣聯合大學系統 108 學年度學士班轉學生考試試是	台	灣聯合大	學系統	108	學年度	學士班轉	學生者	计試試題
----------------------------	---	------	-----	-----	-----	------	-----	------

科目 普通化學 類組別 A1

共11頁第9頁

[29]. Determine the number of water molecules necessary to balance the following chemical equation.

$$Cr_2O_7^{2-}(aq) + Cl^{-}(aq) + H^{+}(aq) \rightarrow Cr^{3+}(aq) + Cl_2(g) + \underline{\qquad} H_2O(l)$$

- A) 3
- B) 5
- C) 7
- D) 14

[30]. The iron content of foods can be determined by dissolving them in acid (forming Fe³⁺), reducing the iron(III) to iron(II), and titrating with cerium(IV):

$$Fe^{2+}(aq) + Ce^{4+}(aq) \rightarrow Fe^{3+}(aq) + Ce^{3+}(aq)$$
.

Identify the two half-reactions in the above reaction.

A) oxidation half-reaction $Fe^{2+}(aq) + e^{-} \rightarrow Fe^{3+}(aq)$

reduction half-reaction

B) oxidation half-reaction

 $Ce^{4+}(aq) \to Ce^{3+}(aq) + e^{-}$ reduction half-reaction

 $Fe^{2+}(aq) \to Fe^{3+}(aq) + e^{-}$

 $Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq)$

C) oxidation half-reaction

reduction half-reaction

 $Ce^{4+}(aq) + e^- \rightarrow Ce^{3+}(aq)$

 $Fe^{2+}(aq) \to Fe^{3+}(aq) + e^{-}$

D) oxidation half-reaction

reduction half-reaction

 $Ce^{4+}(aq) \to Ce^{3+}(aq) + e^{-}$

 $Fe^{2+}(aq) + e^{-} \rightarrow Fe^{3+}(aq)$

[31]. For the hypothetical reaction A + 2 B^{x+} \rightarrow A^{y+} + 2 B³⁺, E° = 1.50 V, and ΔG ° = -305 kJ. For this reaction, if the value of x is 4, then the value of y =_____.

- A) 1
- B) 2
- C) 3
- D) 4

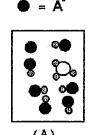
[32]. Given: $Ag^+(aq) + e^- \rightarrow Ag(s)$ $E^{\circ} = +0.799 \text{ V}$ $AgI(s) + e^- \rightarrow Ag(s) + I^-(aq)$ $E^\circ = -0.152 \text{ V}$ $Ni^{2+}(aq) + 2 e^- \rightarrow Ni(s)$ $E^{\circ} = -0.267 \text{ V}$

Which of the following reactions should be spontaneous under standard conditions?

- I. $2 \text{ AgI}(s) + \text{Ni}(s) \rightarrow 2 \text{ Ag}(s) + 2 \text{ I}(aq) + \text{Ni}^{2+}(aq)$
- II. $Ag^+(aq) + I^-(aq) \rightarrow AgI(s)$
- A) I and II are both nonspontaneous.
- B) I is nonspontaneous and II is spontaneous.
- C) I is spontaneous and II is nonspontaneous.
- D) I and II are both spontaneous.

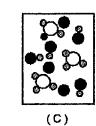
科目 普通化學

類組別 Al

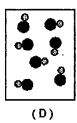

共11頁第10頁

[33]. At a certain temperature, K_C equals 1.4×10^2 for the reaction:

$$2 CO(g) + O_2(g) \rightleftharpoons 2 CO_2(g)$$
.


If a 2.50-L flask contains 0.400 mol of CO_2 and 0.100 mol of O_2 at equilibrium, how many moles of CO are also present in the flask?

- A) 0.422 mol
- B) 0.169 mol
- C) 0.107 mol
- D) 0.0114 mol
- [34]. The following pictures represent aqueous solutions of binary acids of the type HA where the water molecules have been omitted for clarity.



•• = HA

(B)

\$ = H₃O⁺

Determine the strongest acid of the set.

- A) A
- B) B
- C) C
- D) D
- [35]. What is the second stepwise equilibrium constant expression for phosphoric acid H_3PO_4 ?
 - A) $K_{a2} = ([H_3O^+][H_2PO_4^-])/([H_3PO_4])$
 - B) $K_{a2} = ([H_3O^+]2[HPO_4^{2-}])/([H_3PO_4])$
 - C) $K_{a2} = ([H_3O^+]3[PO_4^{3-}])/([H_3PO_4])$
 - D) $K_{a2} = ([H_3O^+][HPO_4^{2-}])/([H_2PO_4^{-}])$
- [36]. Sodium reacts violently with water according to the equation:

$$2 \text{ Na}(s) + 2 \text{ H}_2\text{O}(l) \rightarrow 2 \text{ NaOH}(aq) + \text{H}_2(q)$$

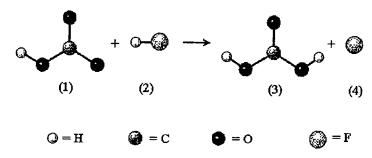
The resulting solution has a higher temperature than the water prior to the addition of sodium. What are the signs of ΔH° and ΔS° for this reaction?

- A) ΔH° is negative and ΔS° is negative.
- B) ΔH° is negative and ΔS° is positive.
- C) ΔH° is positive and ΔS° is negative.
- D) ΔH° is positive and ΔS° is positive.

科目 普通化學

類組別___A1

共11頁第11頁


[37]. For the process

CaCO₃(calcite)
$$\rightarrow$$
 CaCO₃(aragonite) ΔH° = -0.21 kJ, ΔS° = -4.2 J/K

Assuming that the surroundings can be considered a large heat reservoir at 25°C, calculate $\Delta S_{\rm surr}$ and $\Delta S_{\rm total}$ for the process at 25°C and 1 atm pressure. Is the process spontaneous at 25°C and 1 atm pressure?

- A) $\Delta S_{\text{surr}} = 4.2 \text{ J/K}$, $\Delta_{\text{total}} = 0$, not spontaneous
- B) $\Delta S_{\text{surr}} = 0.7 \text{ J/K}$, $\Delta S_{\text{total}} = -3.5 \text{ J/K}$, not spontaneous
- C) $\Delta S_{\text{surr}} = -0.7 \text{ J/K}$, $\Delta S_{\text{total}} = -4.9 \text{ J/K}$, spontaneous
- D) $\Delta S_{\text{surr}} = -0.7 \text{ J/K}$, $\Delta S_{\text{total}} = -4.9 \text{ J/K}$, not spontaneous

[38]. In the following reaction the unshaded spheres represent H atoms.

Identify the Brønsted-Lowry acid/base conjugate pairs.

- A) (1)/(2) and (3)/(4)
- B) (1)/(3) and (2)/(4)
- C) (1)/(4) and (2)/(3)
- D) none of the above.
- [39]. An experiment with ⁵⁵Co takes 47.5 hours. At the end of the experiment, 1.90 ng of ⁵⁵Co remains. If the half life is 18.0 hours, how many ng of ⁵⁵Co were originally present?
 - A) 2.47 ng
 - B) 3.05 ng
 - C) 3.28 ng
 - D) 11.8 ng
- [40]. The functional groups in the molecule below are

- A) alkane, aldehyde, and ester.
- B) alkane, aldehyde, ketone, and ether.
- C) alkane, carboxylic acid, and ester.
- D) alkane, ketone, and ester.