科目_	普通物理 類組別 A3 A5 A7 共 / 頁 第 / 頁
*請在	答案卷內作答
填充	題,共6題。請將答案依題號順序寫在答案卷上,不必寫演算過程。
1.	A ladder of length L and weight W rests on a rough floor and against a frictionless wall, as shown in figure 1. The maximum angle θ between ladder and wall is 45°. (a) Find the minimum coefficient of static friction at the floor. (b) the force exerted by the wall at this angle θ = 45°. (a)10% (b) 5%
2.	A uniform rod of length L and mass M is pivoted freely at one third of the rod as shown in figure 2. (a) What is the angular acceleration of the rod when it is at angle θ to the vertical. (b) What is the tangential linear acceleration of the end A of the rod when the rod is horizontal? The moment of inertia of a rod about one end is ML ² /3. (a)10% (b)5%
3.	What is the heat input needed to raise the temperature of 2 moles of di-atomic gas, like hydrogen, from 0°C to 100°C (a) at constant volume; (b) at constant pressure? (c) What is the work done by the gas in part (b)? (a)5%(b) 5%(c) 5%
4.	A radio station transmits a 100-kW signal at a frequency of 150 MHz. For simplicity, assume that it radiates as a point source. At a distance of 10 km from the antenna, find: (a) the amplitudes of the electric and magnetic field strengths, and (b) the energy incident normally on a square plate of side 10 cm in 5 min. (a) 10%
5.0	a)What is the de Broglie wavelength of an electron accelerated from rest by a potential
5.10	difference of 150 V? (b) The 150 eV electron beam are directed at a spacing D = 0.2 nm crystal. Find the angular position of the first diffraction maxima angle θ . (a)7% (b) 8%
6.	The wave function of a particle of mass m in a 1-D box in x-direction , one end at x = 0 and the other end at L, is ψ (x) = Asin(n π x/L). Where n is integer and L = 0.1 nm. (a) Find the ground state energy in eV by using de Broglie's hypothesis. (b) If the particle in the 2 nd excited state. What is the possibility to find the particle in region in between x
	= 0 and $x = L/3$. (a)10% (b)10%
	Gravitational acceleration g = 9.8 m/s^2 Gas constant R = 8.3 J/K.mole Electron mass m_e = $9.1*10^{-31} \text{kg}$ Boltzmann's constant $k = 1.38*10^{-23} \text{ J/K}$ Planck's constant $k = 1.38*10^{-23} \text{ J/K}$ Planck's constant $k = 6.6*10^{-34} \text{ J*s}$ Permittivity constant $\mu_0 = 4\pi*10^{-7} \text{ H/m}$ Permittivity constant $\epsilon_0 = 8.9*10^{-12} \text{ F/m}$
	Εnd A θ 2L/3

Figure 1

Figure 2