科目_應用數學

類組別____A5 902_____

共乙頁第一頁

*請在答案卷內作答

Please show details of your work

1. (10%) Solve the initial value problem

$$y'' + 4y' + 5y = 0$$
, $y(0) = 2$, $y'(0) = -5$

2. (10%) Find the odd periodic expansions of the function (half-range expansion)

$$f(x) = \begin{cases} \frac{2k}{L}x & \text{if } 0 < x < \frac{L}{2} \\ \frac{2k}{L}(L-x) & \text{if } \frac{L}{2} < x < L. \end{cases}$$

- 3. (10%) Find the Fourier transform of e^{-ax^2} , where a > 0.
- (10%) Use the method of separating variables to solve the one-dimensional wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$, for the vibrations of an elastic string of length L. The bounday conditions are u(0,t) = 0 and u(L,t) = 0 for all t.

The initial conditions are u(x, 0) = f(x) and $\frac{\partial u(x, t)}{\partial t} = g(x)$.

Make sure to dicuss the cases with (i)k = 0, (ii)k > 0, and (iii)k < 0, where k is the assigned constant.

- 5. (10%) Find curl \vec{v} , where $\vec{v} = \left[ln(x^2 + y^2), 2tan^{-1} \left(\frac{y}{x} \right), 0 \right]$ is given with respect to right-handed Cartesian coordinates.
- 6. (10%) Find the inverse of the matrix

$$A = \begin{bmatrix} -1 & 1 & 2 \\ 3 & -1 & 1 \\ -1 & 3 & 4 \end{bmatrix}$$

科目_應用數學

____類組別___A5 902 ____ 共<u>乙</u>頁 第<u>乙</u>頁

*請在答案卷內作答

- 7. (10%) (a) Solve $\nabla^2 u = 0$ in spherical coordinates with the boundary conditions $u(R, \varphi) = f(\varphi)$ and $\lim_{r\to\infty} u(r, \varphi) = 0$. Find u inside and outside r=R. (b) Discuss the spatial patterns (nodal lines) of its eigenfunctions such as u_3 .
- 8. (10%)

Use Laplace transform to solve
$$\frac{\partial^2 w(x,t)}{\partial t^2} = c^2 \frac{\partial^2 w(x,t)}{\partial x^2}$$
, with B.C. $\Rightarrow w(0, t) = f(t) = \begin{cases} \sin t & \text{if } 0 \le t \le 2\pi \\ 0 & \text{otherwise} \end{cases}$; $\lim_{x \to \infty} w(x, t) = 0$ $(t \ge 0)$
I.C. $\Rightarrow w(x, 0) = 0$, $\frac{\partial w}{\partial t}\Big|_{t=0} = 0$.

- 9. (10%) The Gamma function is defined as $\Gamma(v) = \int_0^\infty e^{-t} t^{v-1} dt$. Show that $\Gamma(v+1) = v\Gamma(v)$ and $\Gamma(1) = 1$.
- 10. (2%) (a) Define Dirac's delta function $\delta(t-a)$.
 - (3%) (b) Derive Laplace transform of $\delta(t-a)$.
 - (5%) (c) Using Laplace transform to solve

$$y'' + 3y' + 2y = \delta(t - 1)$$

y(0) = 0, y'(0) = 0