科目	普通化學 類組別_	A6		共一7.	頁第一頁答案卡內作答
Mu	ltiple Choice (Only one correct	answer for ea	ch question.) 2 points	for each question	•
1.	An element's most stable ion forms at the ion is 40 and it has 18 electrons, which is 40 and it has 18 electrons, which is 40 and it has 18 electrons (A) Ar, 22 neutrons (B) Ar, 24 new terms.		ent and how many neutron		
2.	A material is made from Al, Ga, and This material would be (A) a metallic conductor because Al in (D) an <i>n</i> -type semiconductor. (E) so	is present. (B) a			9, respectively.
3.	How many protons, neutrons, and election (A) 16 protons, 16 neutrons, 33 election (C) 16 protons, 16 neutrons, 16 election (E) 16 protons, 17 neutrons, 16 election	trons (B) 17 pro	otons, 17 neutrons, 16 elec		
4.	A certain substance, X, has a triple-postatements cannot possibly be true? (A) X can exist as a liquid above 20° (C) Liquid X can exist as a stable phosphology. 20°C. (E) All of these statements could be to the could b	C. (B) X can ease at 25°C, 1 at	xist as a solid above 20°C	•	•
5.	Iron is biologically important in the body. In the blood of an adult human On the average, how many iron atom (A) 8.33×10^{-10} (B) 1.20×10^9	n, there are appro ns are present in	eximately $2.60^{\circ} \times 10^{13}$ red be each red blood cell? (mola	blood cells with a tota ar mass for $Fe = 55.85$	of 2.90 g of iron
6.	A liquid-liquid solution is called an I. it obeys $PV = nRT$. II. it obeys III. solute-solute, solvent-solvent, a IV. solute-solute, solvent-solvent, a (A) I, II, III (B) I, II, IV	Raoult's law. Ind solute-solven	t interactions are very sim		
7.	To calculate the concentration in mode. (A) the mass of the salt added to the (B) the mass of the salt added to the (C) the mass of the salt added, the (D) the molar mass of the salt and (E) the mass of the salt added, the solution.	the solution and the solution and the molar mass of the total volume	the volume of water added the total volume of the solution of the solution.	to the solution. tion. e of the solution.	volume of the

Which pair of ions would *not* be expected to form a precipitate when dilute solutions of each are mixed?

(A) Cu²⁺, S²⁻
(B) Ag⁺, Cl⁻
(C) Ca²⁺, PO₄³⁻
(D) Mn²⁺, OH⁻
(E) Mg²⁺, SO₄²⁻

注:背面有試題

科目	普通化學	類組別	A6		共 <u>'</u> 人見第 <u>人</u> 見
, ,				>	< <u>請在試卷、答案卡內作答</u>
9. ′	the following experi (A) Not all the solid (C) The solid dissoc paper.	mental errors could a was dissolved.	not account for this d (B) More than the rec to particles when it d	iscrepancy? corded amount of solv	than the true molar mass. Which of ent was pipetted into the solution. Solid was left on the weighing dried.
	~~ .1 C 11 .		11.		
10.	Temperature: 0.0°C,	hed and then filled so Pressure: 1.00 atm, leading the solutions given: 1.30 g, leading of gas Y is found to lead to l	uccessively with two Mass of empty bag: 2 Volume of bag: 1.12	20.77 g, Mass of bag for the second s	following data are gathered: filled with gas X: 24.97 g, Mass of fP: 22.4 L (E) 0.180 g/L.
11.	The molar mass of g	as Y is			
11.		(B) 89.0 g/mol.	(C) 125 g/mol.	(D) 140. g/mol.	(E) 157 g/mol.
12.	Under which of the (A) STP (B) $P = 2.0$ atm, $T = 2.0$	1.0 atm, $T = 100.0$ °C			= 0.50 atm, $T = 0.0$ °C
13.	 (A) A system that is (B) Equilibrium in (C) The value of the which equilibries (D) A system move 	s disturbed from an emolecular systems is equilibrium constants ium is attained.	dynamic, with two	responds in such a want opposing processes bath in mixture is the same rium.	ay as to restore equilibrium. lancing one another. regardless of the direction from
14.				relationship between (E) $K = K_p(RT)$	K and K_p at temperature T ? $K_p = K(RT)$
15.		ber of, one (B) one	mperature, there are ge, an infinite number of (E) none of	of (C) one, one	onstant(s) and equilibrium
16.	(A) If the system is(B) This is a hetero(C) If the pressure(D) Adding more Is	heated, the right side geneous equilibrium on the system is increases the equilibrium $H_2(g)$ increases the equilibrium $H_2(g)$	eased by changing th	e volume, the left side	e is favored.
17.		ving species is <i>not</i> ar		/T"\ TTC""	
	$(A) HSO_4 \qquad (B)$	H_2PO_4 (C) HP	U_4^- (D) H_2U	(E) HS	
18.		s are listed in order of the single of the s	of decreasing acid street > HClO > HCN	ength in water.	

	Ţ	台灣聯合大學	系統 101	學年度學:	上班轉學生		
科目	普通化學	類組別_	A6			*請在試卷、	頁第 <u>了</u> 頁答案卡內作答
	According to Brøs (A) I (B) I		ry, which of H ₃ COO	the following in the (D) ClO	ons is the weake (E) CN	st base?	
19.	In deciding which (A) the concentra (C) the equilibriu (E) both the conce	tion of each acid s m constant of each	solution only hacid only.	y. (B) the (D) al	pH of each acid l of these. acid.	l solution only.	
20.	Which of the followard $(A) [OH^-] = 0.5 A$	owing indicates the M (B) $[H^{+}] = 0$			(D) $pH = 1.2$	$(E)[H^{+}] = 1.0 \times$	$10^{-4}M$
21.	salt containing the (A) The pH and to (C) The pH and to	olution of the weare conjugate acid of the pOH both increases and the pOH cases and the pOH	of Novocain, ease. achanged.	NvcH ⁺ . Which (B) The <i>p</i> H and		lecrease.	a small amount of
22.	(B) The pH will (C) $[OH^-] > [H^+]$	is not a buffer bed be below 7.00 bed ill be more resista	cause [HCN ause the cor] is not equal to ncentration of th	[CN ⁻]. le acid is greater	Which of the following than that of the base aid than to pH change	
23.	by cooling and c $(A) \Delta H < \Delta E$	ompression. Which	the system	is true for this parties is true for the parti	orocess?	then return the system in the cero. (E) $\Delta H = 1$	the expansion step
	I. The reaction is II. The enthalpy III. The reaction IV. The product (A) I, II	ion of ethyl alcohols exothermic. change would be is not an oxidation of the reaction of (B) I, II, III	ol as described on reduction ccupy a large (C) I, III,	gaseous water water volume than (D)	equation, which were produced. the reactants. III, IV	of the following state (E) I only I state A to state B?	多些
25.		_				g work on the system	1. J=

(B) The amount of work done in the process must be the same, regardless of the path.

(C) It is not possible to have more than one path for a change of state.

(E) The amount of heat released in the process will depend on the path taken.

(D) The final volume of the gas will depend on the path taken.

科目 普通化學

類組別 A6

共了 第 年 頁 第 十 頁 * 請在試卷、答案卡內作答

Use the following to answer questions 26 and 27:

Two samples of a monatomic ideal gas are in separate containers at the same conditions of pressure, volume, and temperature (V = 1.00 L and P = 1.00 atm). Both samples undergo changes in conditions and finish with V = 2.00 L and P = 2.00 atm. However, in the first sample, the volume is changed to 2.0 L while the pressure is kept constant, and then the pressure is increased to 2.00 atm while the volume remains constant. In the second sample, the opposite is done. The pressure is increased first, with constant volume, and then the volume is increased under constant pressure.

- Calculate the difference in ΔE between the first sample and the second sample.
 - (A) 0 (B) 1.00 L•atm (C) 2.00 L•atm (D) 3.00 L•atm (E) 4.50 L•atm

- Calculate the difference in q between the first sample and the second sample.
 - (A) -2.00 L•atm (B) -1.00 L•atm (C) 1.00 L•atm (D) 2.00 L•atm (E) 0.00 L•atm

- When a student performs an endothermic reaction in a calorimeter, how (if any) does the calculated value of ΔH differ from the actual value if the heat exchanged with the calorimeter is not taken into account?
 - (A) ΔH_{calc} is more negative because the calorimeter always absorbs heat from the reaction.
 - (B) ΔH_{calc} is less negative because the calorimeter absorbs heat from the reaction.
 - (C) ΔH_{calc} is more positive because the reaction absorbs heat from the calorimeter.
 - (D) ΔH_{calc} is less positive because the reaction absorbs heat from the calorimeter.
 - (E) ΔH_{calc} equals the actual value because the calorimeter does not absorb heat.
- A mixture of hydrogen and chlorine remains unreacted until it is exposed to ultraviolet light from a burning magnesium strip. Then the following reaction occurs very rapidly.

 $H_2(g) + Cl_2(g) \rightarrow 2 \ HCl(g) \quad \Delta G = -45.54 \ kJ, \ \Delta H = -44.12 \ kJ, \ \Delta S = -4.76 \ kJ,$

Select the statement below that best explains this behavior.

- (A) The reactants are thermodynamically more stable than the products.
- (B) The reaction has a small equilibrium constant.
- (C) The ultraviolet light raises the temperature of the system and makes the reaction more favorable.
- (D) The negative value for ΔS slows down the reaction.
- (E) The reaction is spontaneous, but the reactants are kinetically stable.
- Which of the following result(s) in an increase in the entropy of the system? 30.

- I. (See diagram.)
- II. $Br_2(g) \to Br_2(l)$
- III. NaBr(s) \to Na⁺(aq) + Br⁻(aq) IV. O₂(298 K) \to O₂(373 K)

- V. NH₃(1 atm, 298 K) \rightarrow NH₃(3 atm, 298 K)
- (A) I
- (B) II, V
- (C) I, III, IV
- (D) I, II, III, IV
- (E) I, II, III, V
- One mole of an ideal gas at 25°C is expanded isothermally from 5.0 L to 10.0 L under such conditions that no work is produced in the surroundings. Which statement is correct?
 - (A) $\Delta S_{\text{gas}} = 0$
- (B) $\Delta S_{gas} = R \ln 2/298$ (C) $\Delta S_{univ} = 0$
- (D) $\Delta S_{\text{surr}} = 0$
- (E) $\Delta S_{gas} = \Delta S_{surr}$

- For which process is ΔS negative?
 - (A) evaporation of 1 mol of $CCl_4(l)$
- (B) mixing 5 mL of ethanol with 25 mL of water
- (C) compressing 1 mol of Ne at constant temperature from 1.5 atm to 0.5 atm
- (D) raising the temperature of 100 g of Cu from 275 K to 295 K (E) grinding a large crystal of KCl to powder

注意:背面有試題

科目___普通化學______類組別____A6

- When a stable diatomic molecule spontaneously forms from its atoms, what are the signs of ΔH° , ΔS° , and ΔG° , respectively?

- (A) + + + (B) + - (C) + + (D) - + (E) - -
- For the reaction $A + B \rightarrow C + D$, $\Delta H^{\circ} = +40 \text{ kJ}$ and $\Delta S^{\circ} = +50 \text{ J/K}$. Therefore, the reaction under standard conditions 15
 - (A) spontaneous at temperatures less than 10 K.
- (B) spontaneous at temperatures greater than 800 K.
- (C) spontaneous only at temperatures between 10 K and 800 K.
- (D) spontaneous at all temperatures.

- (E) nonspontaneous at all temperatures.
- A strip of copper is placed in a 1 M solution of copper nitrate, and a strip of silver is placed in a 1 M solution of silver 35. nitrate. The two metal strips are connected to a voltmeter by wires, and a salt bridge connects the solutions. The following standard reduction potentials apply:

$$Ag^{+}(aq) + e^{-} \rightarrow Ag(s) E^{\circ} = +0.80 \text{ V}$$

$$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s) E^{\circ} = +0.34 \text{ V}$$

When the voltmeter is removed and the two electrodes are connected by a wire, which of the following does not take place?

- (A) Electrons flow in the external circuit from the copper electrode to the silver electrode.
- (B) The silver electrode increases in mass as the cell operates.
- (C) There is a net general movement of silver ions through the salt bridge to the copper half-cell.
- (D) Negative ions pass through the salt bridge from the silver half-cell to the copper half-cell.
- (E) Some positive copper ions pass through the salt bridge from the copper half-cell to the silver half-cell.

Use the following to answer questions 36-37:

Consider the galvanic cell shown below (the contents of each half-cell are written beneath each compartment).

The standard reduction potentials are as follows:

$$Cr^{3+} + 3 e^{-} \rightarrow Cr(s)$$
 $E^{\circ} = -0.73 \text{ V}$

$$E^{\circ} = -0.73 \text{ V}$$

$$Br_2(aq) + 2 e^- \rightarrow 2Br^ E^\circ = +1.09 \text{ V}$$

$$E^{\circ} = +1.09 \text{ V}$$

- What is E° for this cell?
 - (A) 1.82
- (B) 0.36 V
- (C) 4.75 V (D) 1.79 V
- (E) 4.40 V
- Which of the following statements about this cell is false?
 - (A) This is a galvanic cell.
- (B) Electrons flow from the Pt electrode to the Cr electrode.
- (C) Reduction occurs at the Pt electrode. (D) The cell is not at standard conditions.
- (E) To complete the circuit, cations migrate into the left half-cell and anions migrate into the right half-cell from the salt bridge.
- For a reaction in a voltaic cell, both ΔH° and ΔS° are positive. Which of the following statements is true?
 - (A) E°_{cell} will increase with an increase in temperature.
- (B) E°_{cell} will decrease with an increase in temperature.
- (C) E°_{cell} will not change when the temperature increases. (D) $\Delta G^{\circ} > 0$ for all temperatures.
- (E) None of the above statements is true.
- Which of the following statements is (are) true?
 - I. An excited atom can return to its ground state by absorbing electromagnetic radiation.
 - II. The energy of an atom is increased when electromagnetic radiation is emitted from it.

 C_2 , B_2 , H_2 , N_2

(D) 3

(C) 2

(B) 1

48.

(A) 0

(A) H_2 , N_2 , C_2 , B_2 (B) N_2 , C_2 , B_2 , H_2 (C) C_2 , N_2 , H_2 , B_2 (D) C_2 , B_2 , H_2 , N_2

For how many of the following does the bond order decrease if you add one electron to the neutral molecule?

(E) 4

 B_2 , Si_2 , P_2 , F_2

注意:背面有試題

(E) H_2 , B_2 , C_2 , N_2

台灣聯合大學系統101學年度學士班轉學生考試命題紙

共了頁第一月 _____類組別____A6_ 科目 普通化學

Which of the following electron distributions among the molecular orbitals best describes the NO molecule?

	σ_{2s}	σ_{2s}^*	$\pi_{2py} = \pi_{2px}$	σ_{2pz}	$\pi_{2py}^* = \pi_{2px}^*$	σ_{2pz}^*
1.	2	2	4	2	4	2
11.	2	2	4	2	4	1
111.	2	2	. 4	1	3	0
IV.	2	2	4	2	2	0
V.	2	2	4	2	1	0
(A) I	(B) II	(C) III	(D) IV	(E) V		

- Which one of the following statements about solid Cu (face-centered cubic unit cell) is incorrect? 50.
 - (A) It will conduct electricity.
- (B) There are two atoms per unit cell.
- (C) The number of atoms surrounding each Cu atom is 12. (D) The solid has a cubic closest-packed structure.
- (E) The length of a face diagonal is four times the Cu radius.

