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Notation.

« R = the set of all real numbers;

o Mpxn(R) = the set of all real m x n matrices;

« P,(R) = the set of all polynomials of degrees at most n with real coeflicients;
« C®(R) = the set of all infinitely differentiable functions from R to R;

« If f is a differentiable function, we write f' for its derivative;

. Ifvis a vector in an inner product space, we write ||v] for its norm.
1. Let a € R, and let T': P3(R) — Py(R) be the function defined by
T(f(z)) = f'(z - a) + (az + 1)f"()
for all f(z) € P3(R).

(a) (8 points) For which real numbers a is the function 7" linear? Prove your
answer.

(b) (10 points) Find all real numbers a such that T is not surjective.
9. Let V be an R-vector space, and let T': V' — V be a linear operator on V.
(a) (8 points) Show that if V = C*(R) and T(f) = f' for all f € C™(R), then
T has infinitely many eigenvalues.

(b) (10 points) Give a detailed proof that if V' = P,(R), then any linear operator
T on V has only finitely many eigenvalues. Your proof should contain enough
details so that the grader can see clearly why it does not work for V- = C* (R).

3. Let V be a (not necessarily finite-dimensional) real inner product space. Let u; and
u, be two distinct vectors in V, and let

S={veV|lv-wul=lv-mul}.

(a) (10 points) What is the necessary and sufficient condition on u; and up so°
that S is a subspace of V7 Prove your answer.

(b) (10 points) When V is finite-dimensional and S is a subspace, what is the
relation between dimV and dim S?7 Prove your answer.
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4. Let A € Mmxn(R) be a matrix and b € R™ be a coluinn vector such that the system
of linear equations Az = b has no solutions for llzl| > 2024, but has at least one
solution for ||z|| < 2024. Give a proof or an explicit counterexample for each of the
following statements.

(a) (10 points) The system of linear equations Az = b has only one solution for
z € R™

(b) (10 points") m > n.

5. (12 points) Let uy, uz, 01, v2 be column vectors in R™ such that uy,us are linearly
independent and v, vz are linearly independent. Prove that the following two con-
. ditions are equivalent.

(a) There exists an n X n orthogonal matrix A such that Au; = v and Aus = vs.
(b) Jluall = lfvll, lluall = vsll, and Jlur = ull = Jlor — vall

6. (12 points) Does there exist a matrix A € M3x3(R) such that

-1 0.0
A2=[ 0 -2 0]7
“\0 0 3

Prove your answer.



