注意:考試開始鈴響前,不得翻閱試題,並不得書寫、畫記、作答。

國立清華大學 113 學年度碩士班考試入學試題

系所班組別:數學系

科目代碼:0102

考試科目:線性代數

一作答注意事項-

- 1. 請核對答案卷(卡)上之准考證號、科目名稱是否正確。
- 考試開始後,請於作答前先翻閱整份試題,是否有污損或試題印刷不 清,得舉手請監試人員處理,但不得要求解釋題意。
- 3. 考生限在答案卷上標記 由此開始作答」區內作答,且不可書寫姓 名、准考證號或與作答無關之其他文字或符號。
- 4. 答案卷用盡不得要求加頁。
- 5. 答案卷可用任何書寫工具作答,惟為方便閱卷辨識,請儘量使用藍色或黑色書寫;答案卡限用 2B 鉛筆畫記;如畫記不清(含未依範例畫記)致光學閱讀機無法辨識答案者,其後果一律由考生自行負責。
- 6. 其他應考規則、違規處理及扣分方式,請自行詳閱准考證明上「國立 清華大學試場規則及違規處理辦法」,無法因本試題封面作答注意事項 中未列明而稱未知悉。

國立清華大學 113 學年度碩士班考試入學試題

系所班組別:數學系碩士班

考試科目 (代碼):線性代數 (0102)

共_2_頁,第_1_頁 *請在【答案卷】作答

Notation.

- \mathbb{R} = the set of all real numbers;
- $M_{m \times n}(\mathbb{R})$ = the set of all real $m \times n$ matrices;
- $P_n(\mathbb{R})$ = the set of all polynomials of degrees at most n with real coefficients;
- $C^{\infty}(\mathbb{R})$ = the set of all infinitely differentiable functions from \mathbb{R} to \mathbb{R} ;
- If f is a differentiable function, we write f' for its derivative;
- If v is a vector in an inner product space, we write ||v|| for its norm.
- 1. Let $a \in \mathbb{R}$, and let $T: P_3(\mathbb{R}) \to P_2(\mathbb{R})$ be the function defined by

$$T(f(x)) = f'(x-a) + (ax+1)f''(x)$$

for all $f(x) \in P_3(\mathbb{R})$.

- (a) (8 points) For which real numbers a is the function T linear? Prove your
- (b) (10 points) Find all real numbers a such that T is not surjective.
- 2. Let V be an \mathbb{R} -vector space, and let $T \colon V \to V$ be a linear operator on V.
 - (a) (8 points) Show that if $V = C^{\infty}(\mathbb{R})$ and T(f) = f' for all $f \in C^{\infty}(\mathbb{R})$, then T has infinitely many eigenvalues.
 - (b) (10 points) Give a detailed proof that if $V = P_n(\mathbb{R})$, then any linear operator T on V has only finitely many eigenvalues. Your proof should contain enough details so that the grader can see clearly why it does not work for $V = C^{\infty}(\mathbb{R})$.
- 3. Let V be a (not necessarily finite-dimensional) real inner product space. Let u_1 and u_2 be two distinct vectors in V, and let

$$S = \{ v \in V \mid ||v - u_1|| = ||v - u_2|| \}.$$

- (a) (10 points) What is the necessary and sufficient condition on u_1 and u_2 so that S is a subspace of V? Prove your answer.
- (b) (10 points) When V is finite-dimensional and S is a subspace, what is the relation between $\dim V$ and $\dim S$? Prove your answer.

國立清華大學 113 學年度碩士班考試入學試題

系所班組別:數學系碩士班

考試科目 (代碼):線性代數 (0102)

共_2_頁,第_2_頁 *請在【答案卷】作答

- 4. Let $A \in M_{m \times n}(\mathbb{R})$ be a matrix and $b \in \mathbb{R}^m$ be a column vector such that the system of linear equations Ax = b has no solutions for ||x|| > 2024, but has at least one solution for $||x|| \le 2024$. Give a proof or an explicit counterexample for each of the following statements.
 - (a) (10 points) The system of linear equations Ax = b has only one solution for $x \in \mathbb{R}^n$.
 - (b) (10 points) $m \ge n$.
- 5. (12 points) Let u_1, u_2, v_1, v_2 be column vectors in \mathbb{R}^n such that u_1, u_2 are linearly independent and v_1, v_2 are linearly independent. Prove that the following two conditions are equivalent.
 - (a) There exists an $n \times n$ orthogonal matrix A such that $Au_1 = v_1$ and $Au_2 = v_2$.
 - (b) $||u_1|| = ||v_1||$, $||u_2|| = ||v_2||$, and $||u_1 u_2|| = ||v_1 v_2||$.
- 6. (12 points) Does there exist a matrix $A \in M_{3\times 3}(\mathbb{R})$ such that

$$A^2 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
?

Prove your answer.