注意:考試開始鈴響前,不得翻閱試題,並不得書寫、畫記、作答。

國立清華大學 111 學年度碩士班考試入學試題

系所班組別:數學系

科目代碼:0102

考試科目:線性代數

-作答注意事項-

- 1. 請核對答案卷(卡)上之准考證號、科目名稱是否正確。
- 考試開始後,請於作答前先翻閱整份試題,是否有污損或試題印刷不清,得舉手請監試人員處理,但不得要求解釋題意。
- 3. 考生限在答案卷上標記 **▶** 由此開始作答」區內作答,且不可書寫姓 名、准考證號或與作答無關之其他文字或符號。
- 4. 答案卷用盡不得要求加頁。
- 5. 答案卷可用任何書寫工具作答,惟為方便閱卷辨識,請儘量使用藍色或黑色書寫;答案卡限用 2B 鉛筆畫記;如畫記不清(含未依範例畫記)致光學閱讀機無法辨識答案者,其後果一律由考生自行負責。
- 6. 其他應考規則、違規處理及扣分方式,請自行詳閱准考證明上「國立 清華大學試場規則及違規處理辦法」,無法因本試題封面作答注意事項 中未列明而稱未知悉。

國立清華大學 111 學年度碩士班考試入學試題

系所班組別:數學系碩士班

考試科目(代碼):線性代數(0102)

1 (10%) Let V be a finite dimensional vector space over \mathbb{R} , and v_1, v_2 be two distinct vectors in V. Show that there is an \mathbb{R} -linear transformation $f: V \to \mathbb{R}$ for which

$$f(v_1) \neq f(v_2).$$

2 (18%) Let $V:=\mathrm{Mat}_{1\times 3}(\mathbb{R})$ and define $f:V\to\mathbb{R}$ by

$$f(x, y, z) := \det \begin{pmatrix} 1 & 2 & 3 \\ 1 & -1 & 2 \\ x & y & z \end{pmatrix}.$$

- (i) Show that f is a linear transformation over \mathbb{R} .
- (ii) Put W := Ker f. Find an \mathbb{R} -basis of W.
- (iii) Let V/W be the quotient space of V by W, and elements in V/W are denoted by \bar{v} for $v \in V$. Show that the map $\bar{f}: V/W \to \mathbb{R}$ given by

$$ar{f}\left(\overline{(a,b,c)}
ight) := \det egin{pmatrix} 1 & 2 & 3 \ 1 & -1 & 2 \ a & b & c \end{pmatrix}$$

is well-defined and is an isomorphism of vector spaces.

3 (14%) Find the Journal canonical form of the following matrix

$$\begin{pmatrix} 2 & -4 & 2 & 2 \\ -2 & 0 & 1 & 3 \\ -2 & -2 & 3 & 3 \\ -2 & -6 & 3 & 7 \end{pmatrix}.$$

- 4 (12%) Suppose that V is finite dimensional inner product space over \mathbb{C} , and T is a normal linear operator on V such that $T^9 = T^8$. Prove that T is self-adjoint and $T^2 = T$.
- 5 (20%) Let V be a finite dimensional vector space over \mathbb{C} with two inner products $\langle \cdot, \cdot \rangle$ and $\langle \cdot, \cdot \rangle'$. Prove the following.
 - (i) There exists a unique linear operator T on V so that $\langle x,y\rangle'=\langle T(x),y\rangle$ for all $x,y\in V$.
 - (ii) The linear operator T in (i) is positive definite with respect to both inner products.
- 6 (14%) Let $V := \mathbb{R}^n$ and let $W \subset V$ be the vector subspace defined as the set of solutions of $x_1 + \cdots + x_n = 0$. Define $W^0 := \{ f \in V^* | f(w) = 0 \text{ for all } w \in W \}$, where

$$V^* := \{ f : V \to \mathbb{R} | f \text{ is a linear transformation over } \mathbb{R} \},$$

國立清華大學 111 學年度碩士班考試入學試題

系所班組別:數學系碩士班

考試科目(代碼):線性代數(0102)

共_2_頁,第_2_頁 *請在【答案卷、卡】作答

the dual space of V. Show that W^0 is equal to the set of all f of the form

$$f\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = \lambda(a_1 + \cdots + a_n) \text{ for some } \lambda \in \mathbb{R}.$$

7. (12%) Given a nonzero matrix $A \in \operatorname{Mat}_n(\mathbb{R})$ and a nonzero vector $\mathbf{b} \in \operatorname{Mat}_{n \times 1}(\mathbb{R})$, show that if there exists a row vector $C \in \operatorname{Mat}_{1 \times n}(\mathbb{R})$ for which CA = 0 and $C\mathbf{b} = 1$, then $A\mathbf{x} = \mathbf{b}$ has no solution.