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Notation: R denotes the field of real numbers; C denotes the field of complex numbers.
F denotes an arbitrary field; My,x»(F') denotes the set of all m x n matrices with entries
in F. If T' is a linear transformation, R(T") denotes the range of T', and N(T) denotes
the null space of T'. If A € M,xn(F'), At denotes the transpose of A, and L4 denotes the
linear transformation from F™ to F™ that sends each vector v € F™ to Av € F™.

s

(12 points) Let V and W be F-vector spaces, and let T: V — W be a linear
transformation. Prove that dim R(T")+dim N(T") = dim V if V' is finite-dimensional.

. (10 points) Find a matrix A € M3x3(R) such that

a 2t
R(LA)={ z ER3l3a—2b+4c=O} and N(LA)={ -?je GR31teR}

You need to show that the matrix you find has the required properties.

(12 points) Let A € Myxn(F). Show that the system of linear equations Az = b
has a solution for all b € F™ if and only if the system of linear equations A’z =0
has no nonzero solutions.

(12 points) Let A € men(F) and B € Mpym(F). Show that if rank(AB) = m
then rank(BA) =

Let T: V — V be a linear operator on a finite-dimensional F-vector space V.

(a) (6 points) State the definition of eigenvectors of T
(b) (6 points) Give an explicit example of T' that has no eigenvectors.

(c) (8 points) Prove that T has an eigenvector if F = C.

. (10 points) Let A € Myun(F). Show that if Q € My, (F') is an invertible matrix

such that Q1 AQ is diagonal, then each column vector of @ is an eigenvector of L 4.

(12 points) Let T: R®™ — R™ be a linear operator. Show that if T preserves the
Euclidean distance between any two poiuts, that is, ||T'(u) — T(v)|| = ||u — v|| for
any u,v € R", then the matrix representation of T relative to the standard basis is
an orthogonal matrix.

(12 points) Let A € M,,xn(R) be a real symmetric matrix. Show that there exists

a real symmetric matrix B such that B3 = A.



