注意:考試開始鈴響前,不得翻閱試題,並不得書寫、畫記、作答。

國立清華大學 109 學年度碩士班考試入學試題

系所班組別:數學系

科目代碼:0101

考試科目:高等微積分

-作答注意事項-

- 1. 請核對答案卷(卡)上之准考證號、科目名稱是否正確。
- 作答中如有發現試題印刷不清,得舉手請監試人員處理,但不得要求解 釋題意。
- 4. 答案卷用盡不得要求加頁。
- 5. 答案卷可用任何書寫工具作答,惟為方便閱卷辨識,請儘量使用藍色或 黑色書寫;答案卡限用 2B 鉛筆畫記;如畫記不清(含未依範例畫記) 致光學閱讀機無法辨識答案者,其後果一律由考生自行負責。
- 6. 其他應考規則、違規處理及扣分方式,請自行詳閱准考證明上「國立清 華大學試場規則及違規處理辦法」,無法因本試題封面作答注意事項中 未列明而稱未知悉。

國立清華大學 109 學年度碩士班考試入學試題

系所班組別:數學系碩士班

考試科目(代碼):高等微積分(0101)

共__1__頁,第__1__頁 *請在【答案卷、卡】作答

1. (10 pts) Let $f:(0,\infty)\to\mathbb{R}$ be differentiable. If $f(x)\to 5$ and $f'(x)\to \lambda$ as $x\to\infty$, prove that $\lambda=0$.

2. (10 pts) Find the limit

$$\lim_{n\to\infty}\frac{n}{\log n}\left(n^{1/n}-1\right).$$

3. (12 pts) Prove that the function

$$f(x) = \sum_{n=1}^{\infty} \frac{x^2}{x^2 + n^2}$$

is continuous on R.

4. (12 pts) Suppose that $\{p_n\}$ is a sequence of polynomials, and that $p_n \to f$ uniformly on the interval [0,1]. Must f be differentiable?

5. (12 pts) Is there a simple closed curve C in the xy-plane which maximizes the value of

$$\oint y^3 dx + (3x - x^3) dy ?$$

If so, find the maximum value.

6. (12 pts) Let $B = \{x \in \mathbb{R}^n / ||x|| \le r\}$, and suppose $f: B \to \mathbb{R}^n$ satisfying $||f(0)|| \le \frac{2}{3}r$ and

$$||f(x) - f(y)|| \le \frac{1}{3} ||x - y||$$
 for all $x, y \in B$.

Prove that there exists a unique $x \in B$ such that f(x) = x.

7. (16 pts) Let $F: \mathbb{R}^n \to \mathbb{R}^n$ be defined by F(x) = L(x) + G(x), where L is a linear isomorphism and G is a C¹-function. Suppose that there are positive constants M and ε such that $||G(x)|| \leq M ||x||^{1+\varepsilon}$ for all x in a neighborhood of the origin. Prove that F is locally invertible near the origin.

8. (16 pts) Let $f:(a,b)\to\mathbb{R}$ be a C^n -function, and suppose for some $c\in(a,b)$,

$$f'(c) = f''(c) = \cdots = f^{(n-1)}(c) = 0$$
, but $f^{(n)}(c) \neq 0$.

Prove that

(a) For n even, f has a local minimum at c if $f^{(n)}(c) > 0$, and a local maximum at c if $f^{(n)}(c) < 0$.

(b) For n odd, there is neither a local maximum nor a local minimum at c.