注意:考試開始鈴響前,不得翻閱試題,並不得書寫、畫記、作答。

國立清華大學 111 學年度碩士班考試入學試題

系所班組別:工程與系統科學系

乙組

科目代碼:3102

考試科目:熱力學

一作答注意事項-

- 1. 請核對答案卷(卡)上之准考證號、科目名稱是否正確。
- 2. 考試開始後,請於作答前先翻閱整份試題,是否有污損或試題印刷不清,得舉手請監試人員處理,但不得要求解釋題意。
- 3. 考生限在答案卷上標記 ▶ 由此開始作答」區內作答,且不可書寫姓 名、准考證號或與作答無關之其他文字或符號。
- 4. 答案卷用盡不得要求加頁。
- 5. 答案卷可用任何書寫工具作答,惟為方便閱卷辨識,請儘量使用藍色或黑色書寫;答案卡限用 2B 鉛筆畫記;如畫記不清(含未依範例畫記)致光學閱讀機無法辨識答案者,其後果一律由考生自行負責。
- 6. 其他應考規則、違規處理及扣分方式,請自行詳閱准考證明上「國立 清華大學試場規則及違規處理辦法」,無法因本試題封面作答注意事項 中未列明而稱未知悉。

國立清華大學 111 學年度碩士班考試入學試題

系所班組別:工程與系統科學系碩士班 乙組(0531)

考試科目 (代碼): 熱力學 (3102)

共 3 頁,第 1 頁 *請在【答案卷】作答

Problem 1. Water is transformed from the saturated vapor state to the saturated liquid state in a container with constant pressure at 0.1 MPa. This process occurs by a heat transfer Δq across the container wall to the environment at $T_0 = 20$ °C. When per kilogram of water is transformed, calculate (20%):

- (a) The entropy change of water. (4 pt)
- (b) The entropy change of the environment. (3 pt)
- (c) The entropy generation of the container. (3 pt)
- (d) Show that the entropy generation of the container is related to the temperature difference $\Delta T = T_{sat} T_0$ as:

$$s_{gen} = \Delta q \left[\frac{\Delta T}{(T_{sat} - \Delta T)T_{sat}} \right]$$
 (5 pt)

(e) Based on the answer in (d), how can we minimize the entropy generation? Is there a limitation? (5 pt)

The selected properties of water are listed below.

P, MPa	T _{sat} , °C	h _f , kJ/kg	h _g , kJ/kg
0.1	99.61	417.50	2675.00

Problem 2. A heat pump is applied to warm up a room. Refrigerant R-134a enters the condenser of the heat pump at 800 kPa and 55 °C at a rate of 0.018 kg/s and leaves at 750 kPa and 26 °C. After the condenser, the refrigerant goes through the expansion valve and the evaporator, then enters the compressor at 200 kPa and -6 °C. Determine (15%):

- (a) The rate of heat supplied to the room. (5 pt)
- (b) The COP of the heat pump. (5 pt)
- (c) What is the highest COP that can be achieved if the temperature of condenser and evaporator are kept the same as the current cycle? (5 pt)

The selected properties of R-134a are supplied below.

P, kPa	T _{sat} , °C	h _f , kJ/kg	h _g , kJ/kg	
200	-10	38.43	244.46	
750	29	92.22	266.20	
800	31	95.47	267.29	

 C_p of liquid R-134a can be assumed as constant of 1.23 kJ/kg.K, but it changes with temperature ($C_p = 0.19 + 2.56 \times 10^{-3} T - 1.30 \times 10^{-6} T^2$ kJ/kg.K) when superheated.

國立清華大學 111 學年度碩士班考試入學試題

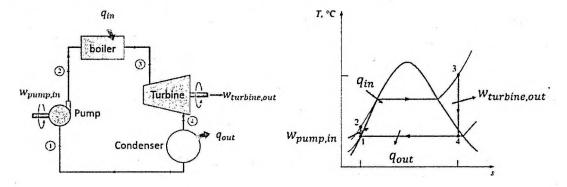
系所班組別:工程與系統科學系碩士班 乙組(0531)

考試科目 (代碼): 熱力學 (3102)

共 3 頁,第 2 頁 *請在【答案卷】作答

Problem 3. A rigid tank of volume V is to be filled with an ideal gas. Initially the gas in the tank is at P_1 and T_1 . The ideal gas enters the tank at P_{in} and T_{in} . The process is adiabatic. Prove that the final temperature T_2 is:

$$T_2 = \left[\frac{(P_2 - P_1)}{(kP_2 T_{in})} + \frac{P_1}{P_2} T_1 \right]^{-1}$$


where $k = C_p/C_v$. (15%)

Problem 4. Normal decane $(C_{10}H_{22})$ is a fuel component in gasoline and kerosene. In a combustion lab, you are asked to program a detector that can calculate the actual equivalence ratio (ϕ) and percent theoretic air of reactants from the dry product mole fractions measured in burned gas of $C_{10}H_{22}$. The product mole fractions currently are known to be 83.61% N₂, 4.91% O₂, 10.56% CO₂ and 0.92% CO. Follow the steps below to complete the task. (20%; 4 pts each)

- (a) Write out the mass balance for the chemical reaction.
- (b) Calculate the air/fuel ratio at the stoichiometric combustion.
- (c) Obtain the mass balance coefficients for C and N in the actual combustion condition.
- (d) Calculate the air/fuel ratio at the actual combustion.
- (e) Calculate (ϕ) and percent theoretic air of reactants.

Problem 5.

The Rankine cycle or Rankine Vapor Cycle is the process widely used by power plants such as coal-fired power plants or nuclear reactors. The pictures below show the components of a Rankine cycle (left) and its T-S diagram (right) with an ideal operation. Answer the questions below: (15%; 5 pts each)

國立清華大學 111 學年度碩士班考試入學試題

系所班組別:工程與系統科學系碩士班 乙組(0531)

考試科目 (代碼): 熱力學 (3102)

共 3 頁,第 3 頁 *請在【答案卷】作答

- (a) Sketch the deviation of actual vapor power cycle form the ideal Rankine cycle in the T-s diagram shown above.
- (b) A steam power plant has a high pressure of 5 MPa and maintains 50°C in the condenser. The boiler exit temperature is 600°C. All the components are ideal except the turbine which has an actual exit state of saturated vapor at 50°C. Calculate the turbine isentropic efficiency.
- (c) Following (b), you are asked to <u>calculate the cycle efficiency</u> with the actual turbine. Hint: the pump work can be calculated by the product of a constant specific volume and pressure difference.

Superheated Vapor Water

Temp.	$(\frac{m^3}{kq})$	$(\frac{kJ}{kg})$	H (kJ/kg)	$(\frac{kJ}{kg \cdot K})$			
	5000 kPa (263.99°C)						
Sat.	0.03944	2597.12	2794.33	5.9733			
600	0.07869	3273.01	3666.47	7.2588			

Saturated Water

	Enthalpy, kJ/kg			Entropy, kJ/kg-K			
Temp.	Press. (kPa)	Sat. Liquid $(h_{\rm f})$	Evap. (h _{fg})	Sat. Vapor (hg)	Sat. Liquid (s _f)	Evap. (s _{fg})	Sat. Vapor
50	12.350	209.31	2382.75	2592.06	0.7037	7.3725	8.0762

Saturated Water

		Specific Volume, m ³ /kg			Internal Energy, kJ/kg		
Temp.	Press. (kPa)	Sat. Liquid (v _f)	Evap. (v _{fg})	Sat. Vapor (v _g)	Sat. Liquid (u _f)	Evap. (u _{fg})	Sat. Vapor (u _g)
50	12.350	0.001012	12.0308	12.0318	209.30	2234.17	2443.47

Problem 6.

You are asked to evaluate the performance of a disk brake on a running car. The 10-kg iron disk brake is initially at 10°C and increased to 110°C after the brake is engaged. The specific heat of the iron is 0.45 kJ/(kg-°C). (15%)

- 1. Determine the availability of the disk during this braking action. What does the availability mean in this process? (10 pts)
- 2. Determine the energy that needs to be taken from the gas tank of the car for operating the brake. (5 pts)