注意:考試開始鈴響前,不得翻閱試題,並不得書寫、畫記、作答。

國立清華大學 110 學年度碩士班考試入學試題

系所班組別:工程與系統科學系

甲組

科目代碼:3002

考 試 科 目 : 材料熱力學

一作答注意事項-

- 1. 請核對答案卷(卡)上之准考證號、科目名稱是否正確。
- 2. 考試開始後,請於作答前先翻閱整份試題,是否有污損或試題印刷不 清,得舉手請監試人員處理,但不得要求解釋題意。
- 考生限在答案卷上標記 由此開始作答」區內作答,且不可書寫姓名、准考證號或與作答無關之其他文字或符號。
- 4. 答案卷用盡不得要求加頁。
- 5. 答案卷可用任何書寫工具作答,惟為方便閱卷辨識,請儘量使用藍色或黑色書寫;答案卡限用 2B 鉛筆畫記;如畫記不清(含未依範例畫記)致光學閱讀機無法辨識答案者,其後果一律由考生自行負責。
- 6. 其他應考規則、違規處理及扣分方式,請自行詳閱准考證明上「國立 清華大學試場規則及違規處理辦法」,無法因本試題封面作答注意事項 中未列明而稱未知悉。

系所班組別:工程與系統科學系碩士班 甲組(0530)

考試科目(代碼):材料熱力學(3002)

(可用中文或英文作答。請清楚標明題號以利批改。)

Question 1

- (a) The phase diagrams of two alloys (alloy 1 and alloy 2) are illustrated below. In which of the two alloys is there an energetic tendency for the A and B atoms to attract to each other? Briefly explain your answer. (5%)
- (b) Schematically draw the free energy curves vs concentration for the A-B alloy at temperatures T_1 and T_2 for alloy 1, and T_3 for alloy 2, and briefly explain how the phase diagrams are constructed from the free energy curves. Make sure to clearly label all the curves. (15%)

Ouestion 2

- (a) Determine the maximum allowed partial pressure of water vapor in wet hydrogen (H₂ + H₂O) at 1 atm in which manganese (Mn) can be heated without oxidation occurring at 1100°C. (7%)
- (b) Is the oxidation of Mn by water vapor exothermic or endothermic? Justify your answer with data. (3%)

There is an Ellingham diagram on the next page for you to check the answer.

Data:
$$H_{2(g)} + \frac{1}{2}O_{2(g)} = H_2O_{(g)}, \Delta G^o = -247,500 + 55.85T J$$

 $2Mn_{(s)} + O_{2(g)} = 2MnO_{(s)}, \Delta G^o = -777,800 + 152.64T J$
Gas constant, $R = 8.314 \text{ J/mol-K}$

系所班組別:工程與系統科學系碩士班 甲組(0530)

考試科目 (代碼):材料熱力學 (3002)

共 4 頁,第 2 頁 *請在【答案卷】作答

The Ellingham diagram for selected oxides.

系所班組別:工程與系統科學系碩士班 甲組(0530)

考試科目(代碼):材料熱力學(3002)

共 4 頁,第 3 頁 *請在【答案卷】作答

Question 3

A fluid is held in a container that is covered with a frictionless piston. The container and the piston are thermally insulated (no heat exchange with the environment), and the environment is at constant pressure, P. A paddle is placed within the container, which is rotated by dropping a weight of mass M attached to a frictionless pulley contraption (see the figure below). Assume that the mass M drops by a distance h with the gravity g.

You are lucky that the properties of this fluid, including the heat capacities, C_p and C_v , the isobaric thermal expansivity, α , and the isothermal compressibility, β , have all been measured. It also turns out that they are constant for the process of consideration.

- (a) Derive an expression for the change in temperature, ΔT , between the final equilibrated state after M has been dropped and the initial state before M is dropped. Write your answer in terms of M, h, g, and the properties of the fluid. (10%)
- (b) Derive an expression for the change in volume ΔV with an initial volume V_1 . (10%)

Question 4

Calculate the heat required to form a liquid solution at 1356 K starting with 1 mole of Cu and 1 mole of Ag at 298 K. At 1356 K the molar heat of mixing of liquid Cu and liquid Ag is given by $\Delta H^M = -20,590 X_{\text{Cu}} X_{\text{Ag}} \text{ J/mol.}$ (10%)

Data: $T_{m,Cu} = 1356 \text{ K}, \ T_{m,Ag} = 1234 \text{ K},$ $\Delta H_{m,Cu} = 12,970 \text{ J}, \ \Delta H_{m,Ag} = 11,090 \text{ J},$ $c_{p,Cu_{(s)}} = 22.64 + 6.28 \times 10^{-3} T \text{ J/mol} \cdot \text{K},$ $c_{p,Ag_{(s)}} = 21.30 + 8.54 \times 10^{-3} T + 1.51 \times 10^{5} / T^{2} \text{ J/mol} \cdot \text{K},$ $c_{p,Ag_{(t)}} = 30.5 \text{ J/mol} \cdot \text{K}$

系所班組別:工程與系統科學系碩士班 甲組(0530)

考試科目(代碼):材料熱力學(3002)

共 4 頁,第 4 頁 *請在【答案卷】作答

Question 5

- (a) Derive an expression for $\left(\frac{\partial A}{\partial v}\right)_S$ in terms of the state variables, including T, P, S, V, and the measurable properties of the system, including the heat capacities, C_p and C_v , the isobaric thermal expansivity, α , and the isothermal compressibility, β . A is the Helmholtz free energy defined as U TS. (7%)
- (b) Like (a), derive an expression for $\left(\frac{\partial G}{\partial T}\right)_V$ in terms of the state variables and measurable properties of the system. G is the Gibbs free energy defined as H-TS. (7%)
- (c) Do the quantities you derived in (a) and (b) depend on the size of the system (i.e. is it intensive or extensive)? (6%)

Here are some useful relationships for you to use:

Question 6

One mole of a diatomic ideal gas $(c_v = \frac{5}{2}R, c_p = \frac{7}{2}R)$ initially at 1 Pa and 298 K undergoes the following cycle:

- a. A constant volume heating to twice the initial temperature.
- b. An adiabatic reversible expansion back to 298 K.
- c. An isothermal, reversible compression back to 1 Pa.

Calculate the heat (Q), work (W), internal energy change (ΔU) , and entropy change (ΔS) of the entire cycle. (Gas constant, R = 8.314 J/mol-K) (20%)