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Ql A DC motor with the equivalent electric circuit is shown in Figure 1. The rotor 

has inertia Jm and viscous friction coefficient b. Assume La = 0 to simplify your 

calculation! Also Ra = b = Im = Ke = Kt = 1 With the feedback control 

shown in the block diagram (Figure 2), the whole mechatronic system with feedback 

control is addressed. 

(a) Draw the Nyquist plot for the open-loop gain from e toy (IO pts) 

(b) Use Nyquist criterion to decide the closed-loop system stability (Notes: need to 

give the values ofN, Z, P to get points) (5 pts) 

(c) What is the Gain Margin (G.M) of the closed-loop system? What is the Phase 

Margin(P.M) of the closed-loop system? (Notes:-180° < P.M. < 180° ) (10 pts) 
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Figure 2 
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Q2 As shown in block diagram (Figure 3), the controller is G/s) = kGc/s). 

(a) The bode plot shown below (Figure 4) is for Gc(S)GP(S) at k=l. Write the 

transfer function of the loop gain Gc(S)G/S). (10 pts) 

(b) Draw the Nyquist plot of Gc(s)Gp(s) (assume k=0.5 for part (b)). (indicate the real 

axis crossing and show how you get your Nyquist plot to get credit!) (10 pts) 

(c) Use Nyquist criterion to decide the closed-loop system stability (Notes: need to give 

the values ofN, Z, P to get points) (5 pts) 

R(s) =-OE(s) Gc(s) ---
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Q3 Shown in Figure 5 is the inverted-pendulum schematic of a bicycle model. In 
the model, 0 denotes the tilt angle of the bicycle, eb is the measurement bias 
(which is not used in this problem) and o is the turning angle of the handle for 
balancing and cornering control. 

(a) The differential equation describing the inverted-pendulum dynamics is given by 

0 = 98 + 38 + 160. Derive the transfer function G(s) = :~;~ for the system. (2 pts) 

(b) What is the controllable canonical realization of G(s) in the state space form? (3 

pts) 

(c) Let x = [e e oF , u = 8, and y = 0. Derive the state-space equation 

x = Ax+ Bu , y = Cx + Du. What are the A, B, C, D matrices? Examine the 

controllability and observability of the realization. (5 pts) 

( d) For the realization in ( c ), compute a state feedback matrix K so that the control 

law u = -Kx can place the closed-loop poles at -1, -1, -10. (7 pts) 

( e) The controller you design in ( d) can be put in the block diagram form in Figure 6. 

What is control transfer function C(s)? What type controller is this? (PD, PI, Lead, 

Lag .... ) (8 pts) 

r=O + 8 0 
. C(s) ~ G(s) r 

• -

Figure 5 Figure 6 
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Q4 Plot the root loci of the following characteristic equation as K varies from 

zero to infinity. 

K 
1+-------=0 

s4 +l2s3 +64s2 +l28s 

On the root loci, please clearly indicate 

(a) the open loop poles and zeros (Note: The polynomials3 + 12s2 + 64s1 + 128 

has one of its roots at - 4 . ), (3 pts) 

(b) the segment(s) ofroot loci on the real axis, (1 pts) 

( c) the angles of the asymptotes and their intersection, (3 pts) 

( d) the points where the root loci cross the imaginary axis and the corresponding 

K, (4 pts) 

( e) the approximate breakaway point( s ), ( 4 pts) and 

(f) the angles of departure at the complex poles. (5 pts) 

(g) Also use the root loci to approximately determine the K so that the complex 

roots near the origin have a damping ratio of r; = 0.707. (5 pts) 


