國立清華大學命題紙

98 學年度<u>計量財務金融學</u>系(所)<u>乙組(財務工程組)</u>碩士班入學考試 科目 <u>微積分</u> 科目代碼 4904 共 1 頁第 1 頁 *請在【答案卷卡】內作答

Total 100 points

(1) (5 points each) Fill in Your Answers.

•
$$\lim_{n \to \infty} \sum_{i=1}^{n} \ln \left[\left(1 + \frac{i}{n} \right)^{1/n} \right] = \underline{\qquad (a)}$$

- If $f(x) = \int_2^x \frac{dt}{\sqrt{1+t^4}}$, then $(f^{-1})'(0) = \underline{\qquad (b)}$
- Does $\sum_{k=1}^{\infty} \ln\left(1 + \frac{1}{k^2}\right)$ converge or not? _____(c)
- The plane tangent to the surface $z = x \cos y y e^x$ at (0, 0, 0) is ______(d)
- The integral $f(x, y, z) = x 3y^2 + z$ over the line segment C joining the origin and the point (1, 1, 1) is evaluated as (e)
- (2) (10 points) Give an example that if two real-valued functions f and g satisfy $f'(x) \le g'(x)$ for each $x \in [a, b]$, then f(x) may not be greater than or equal to g(x). Please add a condition so that $f(x) \le g(x)$ for each $x \in [a, b]$.
- (3) (a) (10 points) State the Fundamental Theorem of Calculus.
 - (b) (15 points) Let f be continuously differentiable in \Re and $\int_0^\infty \frac{f(t)}{t} dt$ exist, calculate $\int_0^\infty \frac{f(\alpha x) f(\beta x)}{x} dx$, for $\alpha > \beta$.
- (4) (10 points) The plane z = Ax + By + C is to be "fitted" to the following points $(x_k, y_k, z_k) : (0, 0, 0), (0, 1, 1), (1, 1, 1), (1, 0, -1)$. Find the values of A, B, and C that minimize $\sum_{k=1}^{4} (Ax_k + By_k + C z_k)^2$.
- (5) (10 points) Given the one-dimensional differential equation $\frac{dS(t)}{dt} = \alpha S(t) + \beta S(t) \frac{df(t)}{dt}$ where $t \geq 0$, α and β are constants, and S(0) > 0. Prove that S(t) has a positive solution. [Hint: solve S(t) by a logarithm transformation.]
- (6) (5 points each) True or False.
 - (a) Let $\lim_{x\to a} f(x) = 0$ and $\lim_{x\to a} g(x-a) = 0$, then $\lim_{x\to 0} f(x+a) g(x) = 0$
 - (b) If f^2 is Riemann integrable on [0,1], then f is Riemann integrable.
 - (c) The series $\sum_{k=2}^{\infty} \frac{1}{k(\ln k)^2}$ converges.