甲、填空題：共 10 題，每題 8 分，共 80 分。請將答案依題號順序寫在答案卷上，不必寫演算過程。

1. Find the value of a such that \(\lim_{x \to 0} \frac{\sqrt{ax+8} - 2}{x} = \frac{5}{12} \). Answer:

2. The coordinates of a particle in the \(xy \)-plane are differentiable functions of time \(t \) with \(dx/dt = -1 \) m/sec and \(dy/dt = -5 \) m/sec. How fast is particle's distance form the origin changing as it passes through the point \((5, 12)\)? Answer:

3. What is the value of the definite integral \(\int_{0}^{1} \frac{x}{\sqrt[4]{4} + 5x} \, dx \)? Answer:

4. Find \(f(4) \) if \(\int_{0}^{x} f(t) \, dt = x \cos \pi x \). Answer:

5. Find the length of the curve \(y = \int_{0}^{x} \sqrt{\cos 2t} \, dt \) for \(0 \leq x \leq \pi/4 \). Answer:

6. Evaluate \(\int_{1}^{\infty} \frac{\ln x}{x^2} \, dx \). Answer:

7. Find a value for the constant \(b \) that will make the radius of convergence of the power series \(\sum_{n=2}^{\infty} \frac{b^n x^n}{\ln n} \) equal to 5. Answer:

8. Find the value of \(a \) that make \(f(x, y) = \begin{cases} \sin xy & \text{if } xy \neq 0 \\ xy & \text{if } xy = 0 \end{cases} \) continuous on \(\mathbb{R}^2 \). Answer:

9. Find the area of the region \(R \) in the \(xy \)-plane enclosed by the circle \(x^2 + y^2 + 4 \), above the line \(y = 1 \), and below the line \(y = \sqrt{3}x \). Answer:

10. Let \(f(x, y) = x^2 - xy + y^2 - 3y \). Find the direction \(u \) for which \(D_u f(1, -1) = 4 \). Answer:

乙、計算、證明題：共 2 題，每題 10 分，共 20 分。須詳細寫出計算及證明過程，否則不予計分。

1. Find the highest and lowest points on the curve \(x^2 + xy + y^2 = 12 \).

2. (a) If \(F(x, y) = x^2 i + y^2 j \), find a function \(f \) such that \(F = \nabla f \).

(b) Evaluate the line integral \(\int_C F \cdot dr \), where \(C \) is the arc of the parabola \(y = 2x^2 \) from \((-1, 2)\) to \((2, 8)\).