國立清華大學 106 學年度碩士班考試入學試題

系所班組別: 科技管理研究所碩士班

考試科目(代碼): 統計學(4302)

共 2 頁,第1頁 *請在【答案卷、卡】作答

- 1. (a) Give me an example to illustrate the importance of statistics. (10%)
 - (b) How could you apply what statistics knowledge you learned before to the technology management? (10%)
- 2. (a) Why do we need the probability density function and probability mass function? What is the difference between them? (10%)
 - (b) What is the moment-generating function and why do we need it? (5%) Why do we call $E(e^{tX})$ as the moment-generating function? (5%)
- 3. (a) Show that if the random variable X is $N(\mu, \sigma^2), 0 < \sigma^2 < \infty$, then the random variable $\nu = \left(\frac{X-\mu}{\sigma}\right)^2 = Z^2$ is $\chi^2(1)$. (5%)
 - (b) Let $X_1, X_2, ..., X_n$ be observations of a random sample of size n from the normal distribution $N(\mu, \sigma^2)$. Then show that the sample mean, $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$, and the sample variance, $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$, are independent and $\frac{(n-1)S^2}{\sigma^2} = \frac{\sum_{i=1}^n \sum_{i=1}^n (X_i \bar{X})^2}{\sigma^2} \sim \chi^2(n-1).(5\%)$
- 4. (a) A random variable *X* has an exponential distribution if its probability density function is defined by

$$f(x) = \frac{1}{\theta} e^{-\frac{x}{\theta}}, 0 \le \theta < \infty, \theta > 0,$$

what are the mean and variance of X? (6%)

(b) If $\theta = 20$, what is the probability that X is less than 18? (4%)

國立清華大學 106 學年度碩士班考試入學試題

系所班組別: 科技管理研究所碩士班

考試科目(代碼): 統計學(4302)

共 2 頁,第 2 頁 *請在【答案卷、卡】作答

- 5. (a) What is the central limit theorem? (5%)
 - (b) The servicing times for customers coming through a checkout counter in a retail store are independent random variables with mean 1.5 minutes and variance 1. Approximate the probability that 100 customers can be served in less than 2 hours of total service time. (5%)
- 6. Let $Y_1, Y_2,..., Y_n$ be a random sample from a normal distribution with mean μ and variance σ^2 . Find the MLEs of μ and σ^2 . Both MLEs of μ and σ^2 are unbiased? (10%)
- 7. Suppose that Y_1 , Y_2 ,..., Y_n denote a random sample from a Poisson distribution with mean λ . (i) Find the MLE $\hat{\lambda}$ for λ . (ii) Find the expected value and variance of $\hat{\lambda}$. (iii) Show that the estimator of part (a) is consistent for λ . (iv) What is the MLE for $P(Y = 0) = e^{-\lambda}$. (10%)
- 8. (a) A company produces machined engine parts that are supposed to have a diameter variance no larger than .0002 (diameters measured in inches). A random sample of ten parts gave a sample variance of .0003. Test, at the 5% level, H_0 : $\sigma^2 = .0002$ against H_a : $\sigma^2 > .0002$. (5%)
 - (b) Suppose that we wish to compare the variation in diameters of parts produced by the company in part (a) with the variation in diameters of parts produced by a competitor. Recall that the sample variance for our company, based on n = 10 diameters, was $s_1^2 = .0003$. In contrast, the sample variance of the diameter measurement for 20 of the competitor's parts was $s_2^2 = .0001$. Do the data provide sufficient information to indicate a smaller variation in diameters for the competitor? Test with $\alpha = .05$. (5%)

國立清華大學 106 學年度碩士班考試入學試題

系所班組別:科技管理研究所甲組(0543)

考試科目(代碼):統計學(4302)

補充1頁 *請在【答案卷、卡】作答

5 11.0705 6 12.5916 14.0671 8 15.5073 9 16.9190.

	Frest	umerator	df	
Perominator	×	8	9	
19	0.100	2,02 2,48 7,63	1.98 2.42.	
	·			