科目___基 礎 數 學 __科目代碼 __0301 _ 共 _ 2 __頁第 _ 1 _ 頁 *請在試卷【答案卷】內作答

作答時,請非常清楚地標示各題號。非証明題(問題 1-4)之解題或計算過程不列 入評分。

- 1. (10%) The general solution of the equation $y'' + 9y = \sin 3x$ is _____.
- 2. (7%) Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$, where the coefficients a_n are determined by the relation $\cos x = \sum_{n=0}^{\infty} a_n (n+2) x^n$. Then $f(\pi) =$ _____.
- 3. (7%) A linear Cartesian equation for the plane through (2, 3, 1) parallel to the plane through the origin spanned by (2, 0, -2) and (1, 1, 1) is _____.
- 4. (a) (6%) $\lim_{n\to\infty} \frac{(n!)^2 2^{2n}}{(2n)! \sqrt{n}} = \underline{\hspace{1cm}}$.
 - (b) (6%) The function $f(x) = \underline{\qquad}$ is a non-zero continuous function satisfying $f^2(x) = \int_0^x f(t) \frac{\sin t}{2 + \cos t} dt$.
 - (c) (6%) If a is an arbitrary real number, let $s_n(a) = 1^a + 2^2 + ... + n^a$. Then $\lim_{n \to \infty} \frac{s_n(a+1)}{n s_n(a)} = \underline{\hspace{1cm}}.$
 - (d) (6%) $\lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^{n} \left(\frac{k}{n}\right)^2 = \underline{\hspace{1cm}}$
- 5. (6%) Prove that $\int_{-\infty}^{\infty} f(x)dx = 1$, where $f(x) = (a\sqrt{2\pi})^{-1} \exp\{-\frac{1}{2}(x-b)^2/a^2\}$ with a > 0.

科目 基礎數學 科目代碼 0301 共 2 頁第 2 頁 *請在試卷【答案卷】內作答

- 6. (10%) Let $f(x,y) = k_1 \cdot \exp\{-k_2[x^2 2\rho xy + y^2]\}$ with positive constants k_1 and k_2 and $-1 < \rho < 1$, where $-\infty < x, y < \infty$. Characterize the set of all (x,y)'s such that f(x,y) = c, where c is a given constant satisfying $0 < c < \max_{x,y} f(x,y)$. In other words, give characteristics that will uniquely determine the graph of the set.
- 7. Let $f(x_1, x_2, x_3) = 4x_1^2 + 4x_2^2 + 4x_3^2 + 4x_1x_2 + 4x_1x_3 + 4x_2x_3$, $-\infty < x_1, x_2, x_3 < \infty$.
 - (a) (5%) Describe the set of all (x_1, x_2, x_3) 's such that $f(x_1, x_2, x_3) \ge 0$.
 - (b) (7%) Find a linear operator, in terms of a matrix, to transform the given coordinate system to a new coordinate system so the transformed function of f will not contain any cross-product terms.
- 8. (10%) Find the maximum of $f(x_1, x_2, x_3) = 5x_1 + 6x_2 + 7x_3$, subject to the following constraints: $x_1 + 2x_2 + 3x_3 = 11$, $3x_1 + x_2 + x_3 = 10$, and $x_1 + 4x_2 + x_3 \le 15$.
- 9. (7%) Let $\mathbf{X} = [X_{\alpha\beta}]$ be a $p \times n$ data matrix, where $X_{\alpha\beta}$ is the β -th observation on the α -th variable. Define $\mathbf{\varepsilon} = (1, 1, ..., 1)' \in \mathbb{R}^n$, which determines an equiangular line. Consider the *i*th and *j*th rows, \mathbf{x}_i' and \mathbf{x}_j' , of \mathbf{X} , and let \mathbf{u}_i and \mathbf{u}_j be the corresponding projections on $\mathbf{\varepsilon}$. Is there any statistical interpretation of the cosine of the angle between $\mathbf{x}_i \mathbf{u}_i$ and $\mathbf{x}_j \mathbf{u}_j$?
- 10. (7%) Assume that $\mathbf{M} = \begin{pmatrix} 0.9 & 0.2 \\ 0.1 & 0.8 \end{pmatrix}$. Without finding \mathbf{M}^{-1} explicitly, compute \mathbf{M}^{-25} .