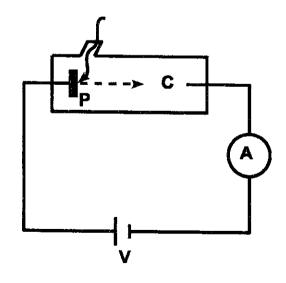
科目: 近代物理(3003)

校系所組:中大物理學系



交大電子物理學系內組、物理研究所 清大物理學系、先進光源科技碩士學位學程甲組 陽明生物醫學影像暨放射科學系生物醫學影像組 陽明生醫光電工程研究所理工組 A

Modern Physics

6 PROBLEMS. Show your calculation steps clearly

- Light strikes a plate in an evacuated chamber. The result is that electrons are emitted from the plate P and are collected by C.
 - (a) In the process a single photon gives up all its energy to a single electron. The maximum possible kinetic energy of the photoelectrons, $\frac{1}{2}mv_{max}^2$, is related to the energy of a photon, hf, by $hf=\frac{1}{2}mv_{max}^2+\phi$. What is the physical meaning of ϕ ? (5 points)
 - (b) Plot the relation between the current measured by A and the applied voltage V at two different light intensity I_1 and I_2 ($I_2 > I_1$). Discuss your curves, especially discuss why the current vanishes at the same applied voltage V_0 for both curves. (5 points)
 - (c) Discuss why an experimentalist can measure the Planck's constant h from the relation between V_0 and f. (5 points)

2. Suppose an electron with energy $E_1=8~{\rm GeV}$ (1 GeV = $10^9~{\rm eV}$) is smashed against a positron with energy $E_2=3.5~{\rm GeV}$ in a laboratory, and only a single particle is

科目:近代物理(3003)

校系所組:中大物理學系

交大電子物理學系內組、物理研究所 清大物理學系、先進光源科技碩士學位學程甲組 陽明生物醫學影像暨放射科學系生物醫學影像組 陽明生醫光電工程研究所理工組 A

produced at rest in the center-of-mass frame in such an event. Note that the positron is the anti-particle of electron and thus has the same mass.

- (a) What is the mass of the produced particle? (10 points)
- (b) What is the speed of the produced particle in the laboratory frame? You may express your result in units of the speed of light, c. (5 points)
- (a) Discuss why classical theory fails to predict the heat capacity of cavity radiation.
 (5 points)
 - (b) To solve this puzzle, Planck assumes that the energy of a monochromatic electromagnetic wave with a given polarization can only take discrete values $\epsilon = n\hbar\omega$, where $n=0,\ 1,\ 2,...,\ \hbar=h/2\pi,\ \omega$ is the angular frequency of electromagnetic wave. Given that in thermal equilibrium, the probability for this wave to have energy ϵ is proportional to $\exp(-\epsilon/k_BT)$, where k_B is Boltzmann constant. Calculate the thermal energy $\langle\epsilon\rangle$ associated with this wave at temperature T. (5 points)
 - (c) Show that your result in (b) reduces to k_BT when $\frac{\hbar\omega}{k_BT}\ll 1$. When $\frac{\hbar\omega}{k_BT}\gg 1$, the result becomes $\langle\epsilon\rangle\approx\hbar\omega\exp(-\frac{\hbar\omega}{k_BT})$. (5 points)
 - (d) Discuss how the result in (c) helps Planck to explain finiteness of the heat capacity of cavity radiation. (5 points)
- 4. Suppose a radio station uses a 50 kW broadcasting antenna to emit radio waves at a frequency of 100 MHz. Consider the ideal situation where the antenna can be approximated as a point source and there is no reflection from the ground. If a person is standing at a distance of 10 km away from the antenna.
 - (a) What is the momentum and energy of each photon? (5 points)
 - (b) Determine the flux of photons received by the person in the SI units. (5 points)
 - (c) Explain whether the quantum nature of the radiation is important for the stereo of the person. (5 points)
- 5. Here is a simple way to estimate the ground-state energy for a particle in a potential U(x). From Heisenberg's uncertainty principle, the kinetic energy in the ground state

科目: 近代物理(3003)

校系所組:中大物理學系

交大電子物理學系內組、物理研究所 清大物理學系、先進光源科技碩士學位學程甲組 陽明生物醫學影像暨放射科學系生物醫學影像組 陽明生醫光電工程研究所理工組 A

is roughly $K = \frac{p^2}{2m} \sim \frac{\hbar^2}{2m\Delta x^2}$. The ground state energy of the particle is obtained by minimizing $K + U(\Delta x)$ with respect to Δx .

- (a) Use this method to estimate the ground-state energy of a particle in a one-dimensional potential $U=\frac{1}{2}kx^2$. (5 points)
- (b) Use this method to estimate the ground-state energy of a hydrogen atom, and give your result in eV. The permittivity constant $\epsilon_0 = 9 \times 10^{-12} C^2/N \cdot m^2$. (5 points)
- (c) Estimate the radius of ground-state orbit for an electron in a hydrogen atom, and give your result in Å. (5 points)
- 6. Consider a one-dimensional simple harmonic oscillator of mass m and charge q. Suppose the system is placed in a static electric field of strength E. The Hamiltonian of this oscillator is given by

$$\hat{H}=\frac{\hat{p}^2}{2m}+\frac{1}{2}m\omega^2\hat{x}^2-qE\hat{x} \ .$$

The ground-state wave function when E=0 is given by

$$\psi_0(x) = \frac{1}{(\sqrt{\pi}x_0)^{1/2}} \exp \left[-\frac{1}{2} \left(\frac{x}{x_0} \right)^2 \right] \ ,$$

where $x_0 = \sqrt{\hbar/(m\omega)}$.

- (a) For a constant electric field E, find the energy levels for all states. (10 points)
- (b) Determine the most likely position of the oscillator in the ground state and give a physical interpretation for your result. (10 points)

科目:近代物理(3003) 校系所組:中大物理學系

交大電子物理學系丙組、物理研究所 清大物理學系、先進光源科技碩士學位學程甲組 陽明生物醫學影像暨放射科學系生物醫學影像組 陽明生醫光電工程研究所理工組A

TABLE I: The following physical constants and conversion factors may be useful in your numerical calculations.

Quantity	Symbol Value	
speed of light	С	$3 \times 10^8 \text{ m/s}$
electron charge	ϵ	$1.6 \times 10^{-19} \text{ C}$
reduced Planck constant	ħ	10^{-34} J s
electron mass	m_e	$9.1 \times 10^{-31} \text{ kg} = 0.511 \text{ MeV/c}^2$
proton mass	m_p	$1.673 \times 10^{-27} \text{ kg} = 938.27 \text{ MeV/c}^2$
neutron mass	m_n	$1.675 \times 10^{-27} \text{ kg} = 939.56 \text{ MeV/c}^2$
fine structure constant	α_{EM}	1/137
Newton's gravitational constant	G_N	$6.673 \times 10^{-11} \ \mathrm{m^3 kg^{-1} s^{-2}}$
Fermi's decay constant	G_F	$1.1 \times 10^{-5} \ \mathrm{GeV^{-2}}$
conversion factor	ħс	197 MeV fm
conversion factor	eV	$1.6 \times 10^{-19} \text{ J}$