科目:代 數(1004) 校系所組:清大數學系純粹數學組

ALGEBRA

- (20%) 1. Let Q be the field of rational numbers.
 - (10%) (a) Prove that the polynomial $f(x) = x^3 + 3x^2 9x + 6 \in Q[x]$ is irreducible over Q.
 - (10%) (b) Let Q(u) be the simple extension field of Q generated by a root $u \in \mathbb{C}$ of the polynomial f(x) in (a). Express $(u+1)^{-1} \in Q(u)$ in terms of the Q-basis $\{1, u, u^2\}$ for Q(u).
- (15%) 2. Let H be a cyclic group. Prove that if H is a normal subgroup of some group G then any subgroup K of H is also normal in G.
- (25%) 3. Given a group G. Let C(G) be the subgroup of G generated by the set of all elements of the form $aba^{-1}b^{-1}$, $a, b \in G$. C(G) is a normal subgroup of G (you don't have to prove this).
 - (7%) (a) Prove that the quotient group G/C(G) is an abelian group.
 - (8%) (b) Let $G \xrightarrow{\phi} G'$ be a group homomorphism from G to an abelian group G'. Prove that $C(G) \subseteq \ker \phi$.
 - (10%) (c) Let S_3 be the symmetric group on 3 letters. Find $C(S_3)$.

 (Hint: Recall that there is a group homomorphism $S_3 \xrightarrow{\phi} \mathbb{Z}_2$ which is onto.)
- (20%) 4. Consider the ring of Gaussian integers $\mathbb{Z}[i] = \{x + yi \mid x, y \in \mathbb{Z}, i = \sqrt{-1}\}.$
 - (10%) (a) For a non-zero principal ideal $J = \langle a + bi \rangle$ in $\mathbb{Z}[i]$, prove that the quotient ring $\mathbb{Z}[i]/J$ is a finite ring. (Hint: $\mathbb{Z}[i]$ is a Euclidean domain with norm $\nu(x+yi) = x^2 + y^2$.)
 - (10%) (b) What is the number of elements in $\mathbb{Z}[i]/J$ for J = <1+i>? Prove your answer.
- (20%) 5. Let K be a field. Let $K[[x]] = \{a_0 + a_1x + a_2x^2 + \cdots \mid a_i \in K\}$ be the ring of formal power series over K.
 - (12%) (a) Prove that $a_0 + a_1x + a_2x^2 + \cdots$ is a unit in the ring K[[x]] if $a_0 \neq 0$.
 - (8%) (b) Let $x = 0 + 1 \cdot x + 0 \cdot x^2 + 0 \cdot x^3 + \cdots$ and let (x) be the principal ideal of K[[x]] generated by x. Prove that (x) is the only maximal ideal of K[[x]].

Typeset by AMS-TEX