八十七學年度 <u>數學系</u>系(所)**純粹數學**組碩士班研究生入學考試 科目 拓 樸 學 科號 0/04 共 / 頁第 / 頁 "讀在試卷【答案卷】內作答

1. (10 points)

Prove or disprove that $S^1=\{(a,b)/a^2+b^2=1\}\subseteq R^2$ (in the usual topology) is homeomorphic with $S^2=\{(a,b,c)/a^2+b^2+c^2=1\}\subseteq R^3$ (in the usual topology).

2. (15 points)

Let $A \subseteq X$, let $f: A \longrightarrow Y$ be a continuous map, and let Y be a Hausdorff space. Show that if the map f may be extended to a continuous map $g: \overline{A} \longrightarrow Y$, then the map g is uniquely determined by the map f, where \overline{A} is the closure of A.

3. (10 points)

Prove the union of a collection of connected sets that have a point in common is connected.

4. (15 points)

Define the quotient space $[R^2-(0,0)]/\sim$, where \sim is the equivalence relation given by $(a,b)\sim(c,d)$ if and only if (ta,tb)=(c,d) for some $t\in R$. Then prove that $S^1=\{(a,b)/a^2+b^2=1\}\subsetneq R^2$ (in the usual topology) is homeomorphic with this quotient space $[R^2-(0,0)]/\sim$.

5. (10 points)

Prove that every compact subset of a topological Hausdorff space is closed.