注意：考試開始鈴響前，不得翻閱試題，並不得書寫，畫記，作答。

國立清華大學108學年度碩士班考試入學試題

系所班組別：數學系

考試科目（代碼）：高等微積分（0101）

—作答注意事項—

1．請核對答案卷（卡）上之准考證號，科目名稱是否正確。
2．作答中如有發現試題印刷不清，得舉手請監試人員處理，但不得要求解釋題意。

3．考生限在答案卷上標記「 由此開始作答」區内作答，且不可書寫姓名，准考證號或與作答無關之其他文字或符號。

4．答案卷用盡不得要求加頁。
5．答案卷可用任何書寫工具作答，惟為方便関卷辨識，請儘量使用藍色或黑色書寫；答案卡限用 2 B 鉛筆畫記；如畫記不清（含未依範例畫記）致光學関讀機無法辨識答案者，其後果一律由考生自行負責。

6．其他應考規則，違規處理及扣分方式，請自行詳閲准考證明上「國立清華大學試場規則及違規處理辨法」，無法因本試題封面作答注意事項中未列明而稱未知悉。

國立清華大學108學年度碩士班考試入學試題

系所班組別：數學系碩士班

考試科目（代碼）：高等微積分（0101）

共＿1＿頁，第＿1＿頁＊請在【答案卷，卡】作答
（1）（ 15% ）If $a_{1}=\sqrt{2}$ ，and

$$
a_{n+1}=\sqrt{2+\sqrt{a_{n}}}, \quad n=1,2,3, \cdots .
$$

prove that the sequence $\left\{a_{n}\right\}$ converges，and that $a_{n}<2$ for $n=1,2,3, \cdots$
（2）Define a function $f: R^{2} \rightarrow R$ by

$$
f(x, y)= \begin{cases}0, & (x, y)=(0,0) \\ x^{2}+y^{2}-2 x^{2} y-\frac{4 x^{6} y^{2}}{\left(x^{2}+y^{2}\right)^{2}}, & (x, y) \neq(0,0)\end{cases}
$$

（a）(5%) Prove that f is a continuous function on R^{2} ．
（b）(15%) Prove that the restriction of f to each line through $(0,0)$ has a local minimum at $(0,0)$ ．
（c）(10%) Is $(0,0)$ a local minimum for f ？（Please give your reasons．）
（3）（ 10% ）Prove that the function $f(x)=\ln x$ is not uniformly continuous on $(0,1)$ ．
（4）（ 10% ）For $n=1,2,3, \cdots, x$ real，put

$$
f_{n}(x)=\frac{x}{1+n x^{2}} .
$$

Show that $\left\{f_{n}\right\}$ converges uniformly to a function f ．Docs $\left\{f_{n}^{\prime}\right\}$ converges to f^{\prime} ？
（5）（10\％）Let D be the solid bounded by the cylinder $x^{2}+y^{2}=4$ ，the plane $x+z=6$ ， and the $x y$－planc．Find

$$
\iint_{S} F \cdot \vec{n} d S
$$

where S is the boundary of D with the unit normal vector \vec{n} directed outward from D and $F(x, y, z)=\left(x^{2}+\sin z\right) i+(x y+\cos z) j+\epsilon^{y} k$.
（6）（a）（15\％）Let $f:[0,1) \rightarrow R$ be a one－to－one continuous function and A the range of f ．Show that the inverse function $f^{-1}: A \rightarrow[0,1)$ is continuous．
（b）（ 10% ）Please give a function $g:[0,1) \rightarrow R^{2}$ which is one－to－one continuous．But its inverse，which is defined on the range of g ，is not continuous．

