國立清華大學104學年度碩士班考試入學試題

系所班組別:數學系 應用數學組

考試科目(代碼): 高等微積分 (0201)

共 _ 1 _ 頁,第 _ 1 _ 頁 *請在【答案卷】作答 Advanced Calculus (Applied Math)

1. (13 pts) Suppose that $f: \mathbf{R} \to \mathbf{R}$ is uniformly continuous on \mathbf{R} , and for $n = 1, 2, 3, \dots$, let

$$f_n\left(x\right) = f\left(x + \frac{1}{n}\right)$$

for $x \in \mathbf{R}$. Prove that $\{f_n\}$ converges uniformly on \mathbf{R} to f.

- 2. (13 pts) Let $f:[0,1] \to \mathbb{R}$ be continuous with f(0)=0. Suppose that f is differentiable in (0,1), and that f' is an increasing function on (0,1). Prove that the function g(x)=f(x)/x is also increasing on (0,1).
- 3. (13 pts) For $n = 1, 2, 3, \dots$, let

$$f_n(x) = \lim_{k \to \infty} (\cos n! \pi x)^{2k}$$
 $(x \in \mathbf{R}).$

Find $\lim_{n\to\infty} f_n(x)$.

- 4. (13 pts) Let X and Y be metric spaces, where X is compact. If f is a continuous one-to-one mapping of X onto Y, prove that f^{-1} is a continuous mapping of Y onto X.
- 5. (15 pts) Define

$$f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}.$$

- (a) Let \overrightarrow{u} be any unit vector in \mathbb{R}^2 . Show that the directional derivative $(D_{\overrightarrow{u}}f)(0,0)$ exists, and that its absolute value is at most 1.
- (b) Prove that f is not differentiable at (0,0).
- 6. (15 pts) Consider the vector field \overrightarrow{F} on \mathbb{R}^2 defined by

$$\overrightarrow{F}(x,y) = (e^x \sin y, e^x \cos y)$$

and let Γ be the path $y=x^2$ joining (0,0) to (1,1) in \mathbb{R}^2 . Evaluate the line integral $\int_{\Gamma} \overrightarrow{F} \cdot d\overrightarrow{s}$. Does this integral depend on the path joining (0,0) to (1,1)? Explain.

7. (18 pts) Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by

$$f(x,y) = (x + y, 2x + ay)$$
.

- (a) Calculate Df(x,y) and show that Df(x,y) is invertible if and only if $a \neq 2$.
- (b) Examine the image of the unit square $[0,1] \times [0,1]$ when a=1,2.
- (c) Find the area of the image of the unit disc $x^2 + y^2 \le 1$ when a = 3.