國 立 清 華 大 學 命 題 紙

- 1. How can the relative supersaturation be varied during precipitate formation? (10%)
- 2. Explain why the titration of copper ion with ammonia is not satisfactory, whereas a chelating agent such as EDTA gives good result? (10%)
- 3. **Define** the following terms: (30%)
 - a. (2%) dynamic range
 - b. (2%) matrix effect
 - c. (3%) detection limit (S/N = 3)
 - d. (4%) photodiode and charge coupled device
 - e. (2%) internal conversion (in spectrophotometry)
 - f. (3%) spectral and chemical interference (in AAS/AES)
 - g. (3%) evanescent wave (ATR)
 - h. (4%) inductively coupled plasma
 - i. (4%) splitless injection and cold trapping (GC)
 - j. (3%) electroosmotic mobility (CE)
- 4. When one mole of an ideal monatomic gas is allowed to expand adiabatically and reversibly from 22.7 L mol⁻¹ at 1 bar and 0°C to a volume of 45.4 L mol⁻¹. How much work is done in the adiabatic expansion? (2^{2/3}=1.5874) (5%)
- 5. Helium is compressed isothermally and reversibly at 100°C from a pressure of 2 to 10 bar. Calculate (a) heat q, (b) work w, (c) $\Delta \overline{G}$, (d) $\Delta \overline{A}$, (e) $\Delta \overline{H}$, (f) $\Delta \overline{U}$, and (g) $\Delta \overline{S}$ per mole, assuming that helium is an ideal gas. (7%) (Gas constant R = 8.314 51 J K⁻¹ mol⁻¹, ln5 = 1.609)
- 6. How many degrees of freedom of intensive variables for N_2O_4 in equilibrium with NO_2 in the gas phase. Write down one possible set of these independent intensive variables. (4%)
- 7. For the reaction $CO(g) + 3H_2(g) = CH_4(g) + H_2O$ at approximately 25°C (g) when 1 bar of inert gas Ar added to this reaction, the equilibrium extent of reaction ξ should increase or decrease. (2%)
- 8. What is the ionic strength of the solution containing both 0.01 mol kg⁻¹ Na₂HPO₄ and 0.01 mol kg⁻¹ NaH₂PO₄. (2%)
- 9. For a reversible first-order reaction A $\frac{k_1}{k_2}$ B derive the integrated rate equation for [A](t) for the initial condition of [A] $(t = 0) = A_0$ and [B] (t = 0) = 0. Plot the concentration of [A] and [B] versus time and indicate the respective decay time constants for [A] and [B] in this plot. (10%)

	國 立 清 華 大 學 命 題 紙	
	學年度	
填充題	夏,每小題二分:答案勿寫在此處,要寫在答案卷上,見題末答案格式樣本。	
10. (a)		
	(example: $C_{2\nu}$ for H_2O)	
(b)	The term symbol $\binom{2s+1}{L_J}$ for nitrogen atom in ground state is That	
	for boron atom is (example: ${}^2S_{1/2}$ for Li)	
(c)	The molecular orbital configuration for the diatomic molecule C_2 is and the term symbol is (example: for Be ₂ , there are $(1\sigma_g)^2(1\sigma_u)^2$ and $^1\Sigma_g$ respectively)	
(d)		
	$\longleftarrow \bullet \longrightarrow \rightarrow , \longleftarrow \bullet \longrightarrow \longleftarrow \bullet , \ ____, \ ____$	
(e)		
	for $2p_x$ orbital is The expectation value of L_Z for $2p_x$ orbital is	
(f)	Fifteen meters of water reduces red sunlight to a quarter of its intensity at	
	surface (I_0). What is the intensity (I) reaching a depth of 30 meters? $I/I_0 =$	
(a)	(using Beer's law for water) For Morse potential $V(x) = D(1-e^{-\beta x})^2$, the force constant k can be expressed	
(g)	$k = $ (in term of D and β). Note that $x=0$ is the minimum of $V(x)$	
(h)		
()	the uncertainty product $(\Delta x)(2p_x) = $ (no integration needed, estimate Δp_x from $E_n = n^2h^2/8ma^2$ for box size a)	
(I)	Express the normalization factor N for antibonding π orbital $\pi_g 2p_x =$	
	$N(2p_x(A) - 2p_x(B))$ in terms of $S = \langle 2p_x(A) 2p_x(B) \rangle$. $N =$	
(J)	Give the total wavefunction for the triplet excited state of Helium atom with	
	the configuration $1s^{1}2s^{1}$ and $S_{Z}=0$. Express it in terms of (1s, 2s) orbital,	
	and (α, β) spin. $\psi(1,2) =$	
10. (a)) xxxxx, xxxxxx	
) xxxxx, xxxxxx	
		

(f) <u>xxxxx</u> (g) <u>xxxxx</u>