國 立 淸 華 大 學 命 題 紙

九十三學年度<u>化學</u>系(所)<u>化學、應用化學</u>組碩士班研究生招生考試 科目_物理化學及分析化學_科號_0603,0703 共 4 頁第_1_頁 *請在試卷【答案卷】內作答

- (a) Explain the "Sources of Systematic Errors" of chemical analysis by giving examples.
 - (b) How to detect the errors of an analytical method? (13%)
- A solution contains NaHCO₃, Na₂CO₃ and NaOH, either alone or in a permissible combination. Titration of a 50.0 ml portion to a phenolphthalein end point requires 30.0 ml of 0.100 M HCl. A second 50.0 ml aliquot requires 52.0 ml of 0.100 M HCl when titrated to a bromocresol green end point (end point at acidic condition). Deduce the composition and calculate the molar solute concentrations of the original solution. (12%)
- 3. Suppose that you are a teaching assistant in a university and you have to provide your students the procedures of preparing a buffer solution, please do your best to write down a step-by-step instruction for your students. The buffer solution should have the following requirements: 1.0 L, pH 6.2, and 1.0 M phosphate (i.e., [H₃PO₄] + [H₂PO₄] + [HPO₄²⁻] + [PO₄³⁻] = 1.0 M). Assuming that your teaching lab has balances, pH meters and electrodes, beakers, volumetric flasks, magnetic stirrers, deionized water, and necessary chemicals including HCl (fw 36.5), NaOH (fw 40.0), H₃PO₄ (fw 98.0), KH₂PO₄ (fw 136.1), K₂HPO₄ (fw 174.2), etc.

(Note: to answer this question, it is not encouraged to do any calculation involving pKa.)

(5%)

- 4. Please describe the major reason why (a) molecular fluorescence spectroscopy is a very sensitive technique and (b) methods of chemiluminescence have very good detection limits?
 (The answer is NOT the 90-degree angle between the incident and emitting beams.) (5%)
- Define matrix effect in analytical measurements. Describe one method (and no more than one) that can be used to minimize matrix effect. (5%)
- Ten analytical techniques are listed in the following. For the obtained spectra, please write down what their x-axes are and their units (the most commonly used form).

For example, the correct answers for *Liquid Chromatography* are x-axis: retention time; unit: min. However, "x-axis: time; unit: day" will be considered as a wrong answer. (10%)

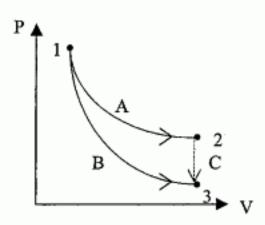
- a. UV/Vis Spectroscopy
- b. IR Spectroscopy
- c. Atomic Absorption Spectroscopy
- d. Secondary Ion Mass Spectroscopy
- e. X-ray Fluorescence Spectroscopy
- f. NMR
- g. X-ray Photoelectron Spectroscopy
- h. Auger Electron Spectroscopy

國 立 淸 華 大 學 命 題 紙

九十三學年度<u>化學</u>系(所)<u>化學、應用化學</u>組碩士班研究生招生考試 科目_物理化學及分析化學_科號_0603,0703_共<u>4</u>頁第<u>2</u>頁 <u>*請在試卷【答案卷】內作答</u>

- i. Capillary Electrophoresis
- j. Cyclic Voltammetry
- A particle of mass m is placed in a one-dimensional box of length ℓ. At certain time, t₀,
 the particle is found in the physical state Ψ (6%)

$$\Psi(x) = 5 \psi_1 + 6 \psi_2 + 8 \psi_3 + 10 \psi_5$$


where ψ_n are the eigenfunctions of particle in a one-dimensional box with quantum number

- (a) Normalize the state wavefunction Ψ(x), and write out Ψ(x) explicitly in terms of m, l, and other constants.
- (b) What are the possible values of energy measurement and the corresponding probabilities?
- (c) What is the average energy of this physical state?
- (d) What is the expectation value of momentum? What is the expectation value of position?
- 8. The partition function is the fundamental concept of statistical thermodynamics. (5%)
 - (a) How to obtain average energy using the energy partition function?
 - (b) What is the definition of vibration partition function?
 - (c) What is the electronic partition function of H₂ at room temperature?
- The simple treatment of molecular vibration is using the harmonic oscillator model. Use this model for the following questions. (6%)
 - (a) For ${}^{1}H^{1}H$ molecule, the functional frequency ω_{e} is 4395.2 cm⁻¹. What is ω_{e} for ${}^{2}D^{1}H$?
 - (b) Draw qualitatively the wavefunctions for v = 4 and v = 0.
 - (c) Can you find the particle outside the potential well in the so called classical forbidden region? Explain.
- 10. Explain the following terms briefly. (8%)
 - (a) Well behaved state function.
 - (b) The ground state term of C₆H₆
 - (c) Bonding and antibonding.
 - (d) σ bond and π bond.

國 立 清 華 大 學 命 題 紙

九十三學年度<u>化學</u>系(所)<u>化學、應用化學</u>組碩士班研究生招生考試 科目_物理化學及分析化學_科號_0603,0703_共<u>4</u>頁第<u>3</u>頁 *請在試卷【答案卷】內作答

11. In the drawing below for a simple ideal gas system, line A is a reversible isotherm at

v	path A rev. 1→2	path B rev. 1→3	path C irrev. 2→3	an irreversible process 1→3 (path not shown)
q	x		у	∅ = ?
w				s
ΔU	⊕ = ?	③ = ?	⑤ = ?	
ΔS	②=?	4 = ?	© = ?	® = ?

12. The ionization constant of an ion could be described by the equation

$$\ln K = 50.0 - \frac{1800}{T} - 10 \ln T$$

between 5°C and 55°C. Calculate values of ΔH^o and ΔS^o for the ionization at 27°C. (Note: $\ln 300 = 5.70$, $\ln 100 = 4.61$, $\ln 2 = 0.693$) (6%)

13. A nonideal gas is described by the truncated virial equations of state:

$$P\overline{V} = RT + AP$$

where A, the second virial coefficients, is functions of T. Find expression of pressure dependence for $\overline{S}(T, P) - \overline{S}^{o}(T)$

The pressure of the standard state is P⁰. (3%)

國 立 清 華 大 學 命 題 紙

九十三學年度<u>化學</u>系(所)<u>化學、應用化學</u>組碩士班研究生招生考試 科目_物理化學及分析化學_科號_0603,0703_共<u>4</u>頁第<u>4</u>頁 <u>*請在試卷【答案卷】內作答</u>

- 14. One possible mechanism for the reaction 2NO + O₂ → 2NO₂ is: (4%)
 - (1) NO + NO \rightarrow N₂O₂
- k_1
- (2) $N_2O_2 \rightarrow 2NO$
- k_2
- (3) $N_2O_2 + O_2 \rightarrow 2NO_2$
- k_3
- (a) Apply steady-state approximation to obtain the rate law.
- (b) If only a small fraction of N₂O₂ formed in reaction (1) proceeds to form products in reaction (1), whereas most N₂O₂ decomposes to NO via reaction (2), what is the activation energy of the overall reaction? The activation energies for reactions (1) (3) are E₁ = 80 kJ mol⁻¹, E₂ = 210 kJ mol⁻¹, and E₃ = 90 kJ mol⁻¹, respectively.
- 15. (a) For competitive reactions

$$A + C \xrightarrow{k_a} P$$
, rate = $k_a[A][C]$

$$B + C \xrightarrow{k_b} Q$$
, rate = $k_b[B][C]$

with initial concentration $[A]_0$, $[B]_0$, and $[C]_0$, what is the slope of the plot of ℓn $([A]/[A]_0)$ vs. ℓn $([B]/[B]_0)$?

(b) For parallel reactions

A
$$\xrightarrow{k_1}$$
 B, rate = $k_1[A]$

$$\xrightarrow{k_2}$$
 C, rate = $k_2[A]$

$$\xrightarrow{k_3}$$
 D, rate = $k_3[A]$

with initial concentrations $[A]_0 = a$ and $[B]_0 = [C]_0 = [D]_0 = 0$, what is [B] as a function of time t? (4%)