化學系
 化學系

 八十六學年度
 化學系
 系(所) 馬用化學 網頭士班研究生入學考試

 4日
 4日</

草選題,每題二分,不倒扣

- One can get larger particle size for gravimetric analysis experiments by
 - (A) rapid cooling
 - (B) rapid addition of the precipitating reagent
 - (C) addition of the precipitating reagent without stirring
 - (D) precipitation from homogeneous solution
- A buffer solution with a pH of 7.0 is prepared by adding NaOH solution into H₃PO₄. What is the main composition of the solution (K₁=7.1×10⁻³, K₂=6.3×10⁻⁸, K₃=4.2×10⁻¹³ for H₃PO₄)
 - (A) H_3PO_4 and H_2PO_4
- (B) $H_2PO_4^-$ and HPO_4^{2-}
- (C) HPO₄2- and PO₄3-
- (D) H₃PO₄ and PO₄3-
- 3. Which of the following statement is <u>not</u> true for a 0.01 M aqueous solution of $NaHCO_3$
 - (A) $0.01 = [H_2CO_3] + [HCO_3^-] + [CO_3^2]$
 - (B) $[H_3O^+] = [HCO_3^-] + 2[CO_3^2 -] + [OH^-]$
 - (C) [HCO₃⁻] z 0.01 M
 - (D) $[CO_3^2-] << [HCO_3^2]$
- 4. Which of the following statement about atomic absorption spectrometry (AA) is true?
 - (A) the sensitivity attained by the flame AA is generally much greater than that attained by graphite furnace AA
 - (B) spectra interference in generally more significant for graphite furance AA than that for flame AA
 - (C) the standard addition method is commonly used in AA for the correction of background absorption
 - (D) More elements can be determined by graphite furance AA than by flame AA

國 立 清 華 大 學 命 題 紙

	八十六學年度。	化學系	_系	(所	化) 点	用化	华 李	組碩士班研究生入學者試
科目	綜合化學	科 <u>號 0701</u>	l L_共	8	賈第 _	2	_類	*魏在試卷【答案卷】內作答

- 5. Which of the following techniques can <u>not</u> be used directly to separate chemical species?
 - (A) electrochemical method
- (B) microwave digestion
- (C) chromatographic method
- (D) precipitation
- 6. The ionic strength of a solution that is both 0.02 M in NaCl and 0.01 M in Na₂SO₄ is
 - (A) 0.03
- (B) 0.04
- (C) 0.05
- (D) 0.06
- 7. Which element in the sample is commonly determined by Kjeldahl method?
 - (A) C
- (B) S
- (C) N
- (D) P
- 8. When will peptization of precipitate most probably occur
 - (A) wash crystalline precipitate with pure water
 - (B) wash crystalline precipitate with ammonia chloride solution
 - (C) wash colloid precipitate with pure water
 - (D) wash colloid precipitate with ammonia chloride solution
- Which of the following is <u>not</u> considered as the applications of ionexchange resins in analytical chemistry.
 - (A) chromatrography
- (B) separation of interfering ions
- (C) concentration of traces of an ion from solution
- (D) as a precipitate reagent
- During the preparation of a permanganate solution for exidationreduction titration. The solution was boiled, explain why.
 - (A) to remove carbon dioxide
 - (B) to dissolve permanganate
 - (C) to hasten exidation of organic matter
 - (D) permanganate solution is more stable at higher temperature

國 立 清 華 大 學 命 題 紙

	, ·	化 學 (十六學年度 化學系 系(新) ^{具用化學} 組碩士班研究生入學考試
科目_	粽	今化學 0601 科號 0701 共 8 頁第 3 頁 ★欄在試卷【答案卷】內作答
	11.	Which of the following statement about buffer solution is not true
		(A) It resists changes in pH by dilution
		(B) It resists changes in pH by small addition of acids or bases
		(C) The most effective buffer solution contain approximately equal
		concentration of conjugate acid-base pair
		(D) A concentrate nitric acid is a buffer solution
	12.	A Ba(OH) ₂ solution was standardized by titration against 0.100 NHCl, 30.0 mL of the base being required to neutralize 40.0 mL of the acid. Calculate the normality (meq/mL) of the Ba(OH) ₂ solution (A) 0.133 (B) 0.266 (C) 0.067 (D) 0.075
	13.	The normality of a solution is determined by four separate titrations, the results being 0.2043, 0.2039, 0.2049, 0.2041. Calculate the standard deviation (A) 0.0001 (B) 0.0002 (C) 0.0003 (D) 0.0004
		, , , , , , , , , , , , , , , , , , ,
	14.	The correct order of electron affinities is
		(A) $F > Cl > Br > I$ (B) $Cl > F > Br > I$ (C) $Cl > Br > F > I$ (D) $F > Br > Cl > I$
	15.	Which atom has the lowest ionization energy (A) N (B) O (C) F (D) Ne
	16.	
		(A) $\mathbf{r} = (\mathbf{n}^2/\mathbf{z}^2)\mathbf{a_0}$ (B) $\mathbf{r} = (\mathbf{n}/\mathbf{z})\mathbf{a_0}$ (C) $\mathbf{r} = (\mathbf{n}^2/\mathbf{z})\mathbf{a_0}$ (D) $\mathbf{r} = (\mathbf{n}/\mathbf{z}^2)\mathbf{a_0}$
		where n is the quantum number, z is nuclear charge and a_0 is the Bohr radius for the hydrogen atom

	Л	- 六學年度 化學系 系(所) 場所化學 組領土班研究生入學者試
科目_	综合	化学 7601 科號 0701 共 8 頁第 4 頁 *調在試卷【答案卷】內作答
	17.	The pressure of gas is in proportional to (A) speed \overline{c} (B) momentum $m\overline{c}$ (C) kinetic energy $m\overline{c^2}$ (D) $(\overline{c^2})^{3/2}$ of the gas molecule. \overline{x} is the average value for x .
	18.	The Maxwell-Boltzmann gas speed (c) distribution function Δ N/N is in proportional to (A) $e^{-mc^2/2kT}$ (B) $ce^{-mc^2/2kT}$ (C) $c^2e^{-mc^2/2kT}$ (D) $c^3e^{-mc^2/2kT}$
	19.	Which molecule has the largest value of constant a in the van der Waals equation $P = RT/(v-b) = a/v^2$ (A) H_2 (B) N_2 (C) CH_4 (D) CO_2
	20.	Which molecule (above four molecules) has the lowest critical temperature.
	21.	The pressure of one atmosphere is about (A) 5 meters (B) 10 meters (C) 20 meters (D) 40 meters of water
	22.	Which condition is satisfied by an ideal solution for mixing A and B (A) $\Delta_{mix}S=0$ (B) $\Delta_{mix}G=0$ (C) $\Delta_{mix}H=0$ (D) $\Delta_{mix}V=0$ The quantity $\Delta_{mix}X$ is the difference in quantity X after and before the mixing.
	23.	Which molecule has the largest value (absolute value > 0) of enthalpy of combustion (A) CH ₄ (B) CH ₃ OH (C) H ₂ CO (D) HCOOH

或 \overline{VI} 漘 垂 大 紐

	八十六學年度_	化學系	系(所)	化 季 亀用化季	
科目	综合化學	060;	1		*請在試卷【答案卷】內作答

24. Which molecule has the longest bond distance

(A) Q_2^{2-}

(B) Q_2^-

 $(C) O_2$

- (D) O_2^*
- 25. Which molecule has the largest C-H bond dissociation energy

- (A) CH₃-H (B) (CH₃)₃C-H
- (C) CH₂=CH-H
- (D) HC≡C-H
- 26. Which wavelength below is in the visible light region?

(A) 50000 nm (B) 5000 nm

- (C) 500 nm
- (D) 50 nm
- 27. If the complex $[Fe(NO)_2(CO)_3]^z$ is a 18-electron complex, what is the value of the charge? (note Fe-N-O is a linear shape)

(A) Z = -1

- (B) Z = 0
- (C) Z = +1
- (D) Z = +2
- What is the point group of 1,3,5,7-tetrafluorocyclooctatetrane

(A) C_{2y}

- (B) C_{2h}
- (C) D_{2d}
- (D) S4

- Which statement is not correct.
 - (A) the N-O bond order: $NO_2^+ > NO_2 > NO_2^-$
 - (B) the O-O bond order: $O_2 > O_2^- > O_2^{-2}$
 - (C) the C-C bond order: $C_2 > C_2^- > C_2^{-2}$
 - (D) the N-O band order: $NO^+ > NO > NO^-$
- 30. For complexes such as I_3^- , N_3^- , IF_2^- , O_3^+ , and NO_2^+ , how many of them are bent with respect to triatomic centers

(A) 1 (B) 2

- (C)3
- (D) 4.
- 31. Which complexes below will have the strongest absorption coefficient in the d-d transition.
 - (A) MnF_4^2
- (B) $Mn(H_2Q)_0^{2*}$
- (C) NiF42-
- (D) $Ni(H_2O)6^{2+}$

或	$\overline{\Omega}$	濇	華	大	學	ជា	題	銋
_		/	-	/\		دات)£23	4

		・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・							
		17.13-732 <u>————</u> 水(77.7 <u>—37.13-7</u> 超模工班研究主八哥名歌							
科自	33. 6	○ 20601 ○ 2010 ○ 2010							
	90	00 777.1							
	32 .	Which compound below will show the largest Jahn-Teller effect							
		(A) $Cr(H_2O)_6^{2+}$ (B) $Ni(H_2O)_5^{2+}$ (C) $C_0(H_2O)_8^{3+}$ (D) $Ti(H_2O)_8^{3+}$							
	33.	The ground state term symbol for CrFe ³⁻ is							
		(A) ${}^{4}A_{2g}$ (B) ${}^{4}T_{2g}$ (C) ${}^{4}T_{1g}$ (D) ${}^{4}E_{g}$							
	34.	The metal center in Cytochrome c is							
		(A) Fe^{2+} (B) Co^{2+} (C) Mg^{2+} (D) Zn^{2+}							
	35.	The W-W bond order in the [CpW(CO) ₂] ₂ complex is							
		(A) 1 (B) 2.5 (C) 2 (D) 3							
	36.								
		(A) $T_1F_4 + 2T_1I_2 = T_1I_4 + 2T_1F_2$							
		(B) $COF_2 + HgBr_2 = COBr_2 + HgF_2$							
		(C) $CuI_2 + 2CuF = CuF_2 + 2CuI$							
ı		(D) $CH_3HgOH + HSO_3^- = CH_3HgSO_3^- + H_2O$							
	37. Which complexes below has the largest 10 Dq value in the d-orbital								
		splitting							
		(A) $Co(NH_3)_6^{3+}$ (B) $Co(NH_3)_6^{2+}$ (C) $Ir(NH_3)_6^{2+}$ (D) $Ir(NH_3)_6^{3+}$							
	38.	Which of the following cycloalkanes exhibits the greatest molar heat of combustion?							
		(A) cyclopropane (B) cyclobutane (C) cyclopentane							
		(D) cyclohexane							

39. Which of the following is a bridged bicyclic alkane?

(C) bicyclo[3.2.0]heptane (D) bicyclo[4.1.0]heptane

(B) bicyclo[2.2.1]heptane

(A) cis-decalin

	7	化 录 (十六學年度 化學系 系(所) ^{集用化學} 組礦士班研究生入學書詞
料目	综	今化学 4號 0701 共 8 頁第 7 頁 *調在試卷【答案卷】內作答
	40.	Which set of reagents will best convert 2,2-dimethylpropanol (neopentyl
		alcohol) to 4,4-dimethyl-2-pentanol?
		(A) 1. HCl (B) 1. HCl, ZnCl ₂
		2. Mg 2. Mg
		3. CH ₃ CHO 3. CH ₂ O
		4. H ₃ O ⁺ 4. H ₃ O ⁺
		(C) 1. SOCl ₂ (D) 1. HCl ₁ ZnCl ₂
		2. Mg 2. Mg
		3. CH ₃ CHO 3. CH ₃ CHO
		4. H ₃ O ⁺ 4. H ₃ O ⁺
		Absorption of what type electromagnetic radiation results in transitions among allowed nuclear spin states? (A) radio wave (B) microwaves (C) ultraviolet light (D) infrared light
	42,	What multiplicities are observed for the signals in the off-resonance decoupled ¹³ C spectrum of 2-chloropropene? (A) 3 singlets (B) a singlet and 2 doublets (C) a singlet, a doublet, and a triplet (D) a singlet, a triplet, and a quartet
	43 .	Which of the species below is less basic than acetylide? (A) CH ₃ Li (B) CH ₃ ONa (C) CH ₂ CHLi (D) NaNH ₂
	44.	When 1,2-dibromobutane is heated at 200°C in the presence of molten KOH, what is the major organic product? (A) 1-bromo-1-butyne (B) 1-bromo-2-butyne (C) 1-butyne (D) 2-butyne

國 立 清 華 大 學 命 題 紙

	八十六學年度	<u>化</u> 學系	系(所)	化 導) 是 用化弹	▶ ● 組織士班(研究生入學者試
科目	索合化學 ── _{──}	Ub	ld k			【苦葉卷】內作答

- 45. Which of the following molecules is chiral?
 - (A) 2,3-pentadiene
- (B) 1,2-pentadiene
- (C) 2-chloro-4-methyl-2,3-pentadiene
- (D) all of the above molecules are chiral
- 46. Which of the following compounds has the highest melting point?
 - (A) toluene
- (B) o-dichlorobenzene
- (C) m-dichlorobenzene

- (D) p-dichlorobenzene
- 47. Which of the following is not a fused-ring heterocycle?
 - (A) purine
- (B) pyrimidine
- (C) benzofuran
- (D) indole
- 48. Which of the following compounds is least reactive in the nucleophilic aromatic substitution reaction with NaOH?
 - (A) 2,4-dinitrochlorobenzene
- (B) 3,5-dinitrochlorobenzene
- (C) o-nitrochlorobenzene
- (D) m-nitrochlorobenzene
- 49. Consider the equilibrium of each of the carbonyl compounds with HCN to produce cyanohydrins. Which is the correct ranking of compounds in order of increasing Keq for this equilibrium?
 - (A) H₂CO < cyclohexanone < CH₃CHO < 2-methylcyclohexanone
 - $(B) \ \ cyclohexanone < 2-methylcyclohexanone < H_2CO < CH_3CHO$
 - (C) cyclohexanone < 2-methylcyclohexanone < $CH_3CHO < H_2CO$
 - (D) 2-methylcyclohexanone < cyclohexanone < $CH_3CHO < H_2CO$
- 50. An ylide is a molecule that can be described as a:
 - (A) carbocation bound to a negatively charged heteroatom.
 - (B) carbocation bound to a carbanion.
 - (C) carbocation bound to a diazonium ion.
 - (D) carbanion bound to a positively charged heteroatom.