紙

生醫工程與環境科學(環境分子科學) 碩士班入學考試

科目<u>分析化學 `科目代碼_2403 共 3</u> 頁第 1 頁

*請在【答案卷卡】內作答]

- 1. (10%) In flame AA with a hydrogen/oxygen flame, the absorbance for iron decreased in the presence of large concentrations of sulfate ion.
 - (a) Suggest an explanation for this observation.
 - (b) Suggest three possible methods of overcoming the potential interference of sulfate in a quantitative determination of iron.
- 2. (10%) A portable photometer with a linear response to radiation registered 73.6 µA (micro-amper) with a blank solution in the light path. Replacement of the blank solution with an absorbing solution yielded a response of 24.9 µA. Calculate
 - (a) The percent transmittance of the sample solution.
 - (b) The absorbance of the sample solution.
 - (c) The transmittance to be expected for a solution in which the concentration of the absorber is one-third that of the original sample solution.
 - (d) The transmittance to be expected for a solution that has twice the concentration of the sample solution.
- 3. (15%) (a) What are the structural characteristics of a chelating agent?
 - (b) Why does the charge on the surface of precipitate particles change sign at the equivalence point in a titration?
 - (c) Why does the typical acid/base indicator exhibit its color change over a range of about 2 pH units?
 - (d) Based on following table, please suggest an indicator that would give an end point for the titration of the first two protons in H₃PO₄.

 $([HPO_4^{2-}] = 0.01, K_{a1} = 7.11 \times 10^{-3}, K_{a2} = 6.32 \times 10^{-8}, K_{a3} = 4.5 \times 10^{-13})$

(e) Why are multidentate ligands preferable to unidentate ligands for complexometric titration?

TABLE 14-1

Common Name	Transition Range, pH	p.K.*	Color Changet	Indicator Type‡
Thymol blue	1.2-2.8			mucator Type4
		1.65§	R-Y	ı
	8.0-9.6	8.96\$	Y-B	
Methyl yellow	2.9-4.0		R-Y	2
Methyl orange	3.1-4.4	3.46§	R-O	2
Bromocresol green	3.8-5.4	4.66§	Y~B	1
Methyl red	4.2-6.3	5.00§	R-Y	2
Bromocresol purple	5.26.8	6.12§	Y-P	. 1
Bromothymol blue	6.2-7.6	7.108	Y~B	1
Phenol red	6.8-8.4	7.81§	Y-R	1
Cresol purple	7.6-9.2		Y-P	-1
Phenolphthalein	8.3-10.0		C-R	1
Thymolphthalcin	9.3-10.5		C-B	ا ب
Alizarin yellow GG	10-12		C-Y	,

At ionic strength of 0.1.

 $^{^{\}dagger}B$ = blue; C = colorless; O = orange; P = purple; R = red; Y = yellow. $^{\ddagger}(1)$ Acid type; HIn + H₂O \Longrightarrow H₃O⁺ + ln⁻; (2) Base type; ln + H₂O \Longrightarrow lnH⁺ + OH⁻.

[§]For the reaction $InH^+ + H_2O \implies H_3O^+ + In$.

國立清華大學命題紙

99 學年度 生醫工程與環境科學(環境分子科學) 碩士班入學考試

*請在【答案卷卡】內作答]

4. (10%) A solution of HClO₄ was standardized by dissolving 0.4125 g of primary-standard-grade HgO in a solution of KBr:

$$HgO(s) + 4Br + H_2O \rightarrow HgBr_4^2 + 2OH$$

The liberated OH consumed 46.51 mL of the acid. Calculate the molarity of the HClO₄.

$$(\mathcal{M}_{HgO} = 216.59 \frac{g}{\text{mole}})$$

- 5. (10%) A 0.6004-g sample of Ni/Cu condenser tubing was dissolved in acid and diluted to 100.0 mL in a volumetric flask. Titration of both cations in a 25.00-mL aliquot of this solution required 45.81 mL of 0.05285 M EDTA. Mercaptoacetic acid and NH₃ were then introduced; production of the Cu complex with the former resulted in the release of an equivalent amount of EDTA which required a 22.85-mL titration with 0.07238 M Mg²⁺. Calculate the percent Cu and Ni in the alloy.
 (Atomic weight of Ni and Cu are 58.963 and 63.546 g/mole, respectively.)
- 6. (10%) Electrolytically generated I₂ was used to determine the amount of H₂S (MW= 34.08 g/mole) in 100 mL of brackish water. Following addition of excess KI, titration required a constant current of 36.32 mA for 10.12 min. The reaction was

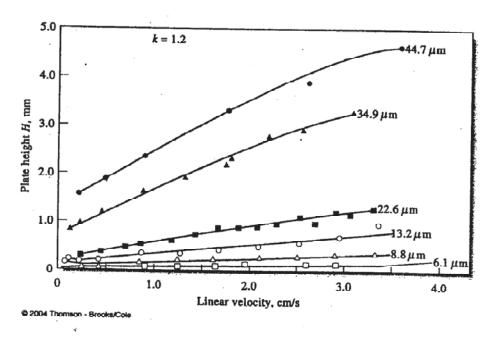
$$H_2S + I_2 \rightarrow S_{(s)} + 2H^+ + 2I^-$$

Express the results of the analysis in terms of ppm (mg/L) H2S. (10%)

- 7. (10%) (a) In 1975, the problem created by the high conductance of eluents was solved by the introduction of an eluent suppressor column immediately following the ion-exchange column. Please describe how the conductance of eluent can be suppressed in the use of suppressor column.
 - (b) Indicate the order of elution of the following compounds from a reverse-phase packed HPLC column:
 - (1) benzene, diethyl ether, n-hexane
 - (2) dichloroethane, acetamide, acetone
 - (c) What is meant by temperature programming in gas chromatography? (5%)

國立清華大學命題紙

99 學年度_____生醫工程與環境科學(環境分子科學) 碩士班入學考試


科目 分析化學 科目代碼 2403 共 3 頁第 3 頁

*請在【答案卷卡】內作答]

- 8. (10%) A solution is 0.150 M in Co²⁺ and 0.0750 M in Cd²⁺
 - (a) Calculate the Co²⁺ concentration in the solution as the first cadmium starts to deposit.
 - (b) Calculate the cathode potential needed to lower the Co²⁺ concentration to 1.00×10⁻⁵ M.
 - (c) Based on (a) and (b) above, can Co²⁺ be quantitatively separated from Cd²⁺?

$$(E_{Cd}^o = -0.403 V E_{Co}^o = -0.277V)$$

(10%) Please refer to following figure and illustrate two parameters arbitrarily to explain their effects on the performance of HPLC.

- 10. (5%) Define following terms
 - (a) replicate samples and interferent
 - (b) TD and TC marks on pipette, burette, volumetric flask

---- The end ----