99學年度 生醫工程與環境科學系 乙組(環境分子科學組) 碩士班入學考試 科目 普通化學 科目代碼 2401 共 6 頁第 1 頁 *請在【答案卷卡】內作答

		11 - 14 - 14		~ ^		口作合
(I) Multiple Choices.	Please choose the	one alternative that	best answers the qu	nestion. (50%, 2% of e	each)
1.	oxygen is 16.0 an (a) More than 50% (c) Almost all O a	nu. What can be	implied about the reference ¹⁷ O. (b) Almo (d) The i	isotopes: ¹⁶ O, ¹⁷ O, elative abundances of st all O atoms are ¹ sotopes all have the	⁸ O.	nass of
2.					ely in oxygen to give	1.993
	g of carbon dioxid	de and 0.9519 g of	water. The empiri	cal formula of man	nitol is	
	(a) CHO	$(b)CH_7O_3$	(c) C_3H_2O	(d) $C_3H_7O_3$	(e) CH ₂ O	
3.	How many molec	-	-		•	
	(a) 2.1×10^{-23} mc		(b) 4.9×10^{22} s	nolecules	(c) 3.1×10^{23} mole	ecules
	(d) 3.6×10^{25} mol	ecules	(e) 0.081 mole	cules		
4.		. (The other react	ion products are aq ess HCl to obtain 27	ueous manganese cl 5 mL of chlorine ga	nloride and water.) I as at 5.0°C and 650 m	
5.	Based on the solut MgCl ₂ (aq) are mix (a) ZnCl ₂ will pred (b) ZnSO ₄ will pred (c) MgSO ₄ will pred	bility rules, which xed? cipitate; Mg ²⁺ and ecipitate; Zn ²⁺ and ecipitate; Zn ²⁺ and ecipitate; Zn ²⁺ and		Il occur when solution to ions. or ions. or ions.	ons of ZnSO ₄ (aq) and	
6	Which of the follo	vina aquationa do	as mot represent on	oridation raduation	roadion?	

6. Which of the following equations does *not* represent an oxidation-reduction reaction?

(a) $3Al + 6HCl \rightarrow 3H_2 + AlCl_3$

(b) $2H_2O \rightarrow 2H_2 + O_2$

(c) $2\text{NaCl} + \text{Pb(NO}_3)_2 \rightarrow \text{PbCl}_2 + 3\text{NaNO}_3$

(d) $2NaI + Br_2 \rightarrow 2NaBr + I_2$

(e) $Cu(NO_3)_2 + Zn \rightarrow Zn(NO_3)_2 + Cu$

	99 學年度 生醫工程與環境科學系 乙組(環境分子科學組) 碩士班入學考試
	科目 <u>普通化學</u> 科目代碼 <u>2401</u> 共 <u>6</u> 頁第 <u>2</u> 頁 *請在【答案卷卡】內作智
7	In the following chemical reaction the <i>oxidizing agent</i> is $5S + 6KNO_3 + 2CaCO_3 \rightarrow 3K_2SO_4 + 2CaSO_4 + CO_2 + 3N_2$ (a) S (b) N ₂ (c) KNO ₃ (d) CaSO ₄ (e) CaCO ₃
8.	When 38.0 mL of 0.1250 M H ₂ SO ₄ is added to 100.0 mL of a solution of PbI ₂ , a precipitate of PbSO ₄ forms. The PbSO ₄ is then filtered from the solution, dried, and weighed. If the recovered PbSO ₄ is found to have a mass of 0.0471 g , what was the concentration of iodide ions in the original solution? (a) $3.10 \times 10^{-4} \text{ M}$ (b) $1.55 \times 10^{-4} \text{ M}$ (c) $6.20 \times 10^{-3} \text{ M}$ (d) $3.11 \times 10^{-3} \text{ M}$ (e) $1.55 \times 10^{-3} \text{ M}$
) .	The octane value of gasoline refers to its (a) percentage C ₈ H ₁₈ by volume. (b) radiation dose. (c) alcohol level. (d) ability to resist engine knocking. (e) percentage of unsaturated hydrocarbons.
10.	 Which one of the following statements about fission and fusion is false? (a) Fission occurs among the heaviest isotopes, whereas fusion occurs more readily for light isotopes. (b) For a fission reaction the mass defect (Δm) is negative, whereas for fusion Δm is positive. (c) In order for fusion reactions to occur, temperatures must be in the millions of degrees. (d) The fission of Pu-239 atoms produces a great number of isotopes of a large number of elements. (e) Neutron-induced fission processes can occur at room temperature, rather than at millions of degrees.
	5.00 g of hydrogen gas and 50.0 g of oxygen gas are introduced into an otherwise empty 9.00 L steel cylinder, and the hydrogen is ignited by an electric spark. If the reaction product is gaseous water and the temperature of the cylinder is maintained at 35°C, what is the final gas pressure inside the cylinder? (a) 7.86 atm (b) 18.3 atm (c) 2.58 atm (d) 6.96 atm (e) 0.92 atm
	When photons with a wavelength of 310.0 nm strike a magnesium plate, the maximum velocity of the ejected electrons is 3.45×10^5 m/s. Calculate the binding energy of electrons to the magnesium surface. (a) 386 kJ/mol (b) 419 kJ/mol (c) 32.7 kJ/mol (d) 321 kJ/mol (e) 353 kJ/mol
	The Lewis structure for a chlorate ion, ClO ₃ , should show single bond(s), double bond(s), and lone pair(s). (a) 2, 1, 10 (b) 3, 0, 9 (c) 2, 1, 8 (d) 3, 0, 10 (e) 2, 1, 9

99 學年度 生醫工程與環境科學系 乙組(環境分子科學組) 碩士班入學考試 科目 普通化學 科目代碼 2401 共 6 頁第 3 頁 *請在【答案卷卡】內作答

- 14. The azide ion, N₃, is very reactive although it is isoelectronic with the very stable CO₂ molecule. This reactivity is reasonable inasmuch as
 - (a) a Lewis structure cannot be written for the azide ion that has nitrogen formal charges of zero.
 - (b) there is no valid Lewis structure possible for the azide ion.
 - (c) there are resonance structures for azide ion but not for carbon dioxide.
 - (d) nitrogen cannot form multiple bonds.
 - (e) charged species always decompose in solution.
- 15. Silver metal crystallizes in a face-centered cubic lattice with L as the length of one edge of the unit cube. The center-to-center distance between nearest silver atoms is
 - (a) L/2
- (b) 2 ½ L
- (c) 2L
- (d) $L/2^{\frac{1}{2}}$
- (e) None of the above.
- 16. At 10°C one volume of water dissolves 3.10 volumes of chlorine gas at 1.00 atm pressure. What is the Henry's Law constant in mol/L atm?
 - (a) 3.8
- (b) 0.043
- (c) 36
- (d) 3.1
- (e) 0.13
- 17. Nitric oxide reacts with chlorine to form nitrosyl chloride, NOCl. Use the following data to determine the rate equation for the reaction.

NO +
$$(1/2)Cl_2 \rightarrow NOCl$$

Expt. #	[NO] [Cl ₂]	Initial Rate
1	0.22 0.065	0.96 M/min
2	0.66 0.065	8.6 M/min
3	0.44 0.032	1.9 M/min

- (a) rate = k[NO]
- (b) rate = $k[NO][Cl_2]^{1/2}$
- (c) rate = $k[NO][Cl_2]$

- (d) rate = $k[NO]^2[Cl_2]$
- (e) rate = $k[NO]^2[Cl_2]^2$
- 18. The isomerization of cyclopropane follows first order kinetics. The rate constant at 700 K is $6.20 \times 10^{-4} \,\mathrm{min}^{-1}$, and the half-life at 760 K is 29.0 min. Calculate the activation energy for this reaction.
 - (a) 5.07 kJ/mol

(b) 27.0 kJ/mol

(c) 50.7 kJ/mol

(d) 160 kJ/mol

(e) 270 kJ/mol

99 學	年度 生醫工	程與環境科	學系	乙組(環境	分子	科學組	碩士班/	入學考試	
科目	普通化學	科目代碼_	2401	_共_	6	頁第_	4 頁	*請在	【答案卷卡】	內作答

19. At a particular te	mperature the first-ord	ler gas-phase reaction	$1 N_2O_5 \rightarrow 2NO_2 + (1$	1/2)O ₂ has a half-life for
			,	O ₅ is introduced into an
evacuated 2.00 L	flask. What will be	the total gas pressure	inside the flask afte	r 3.00 hours?
(a) 0.969 atm	(b) 0.105 atm	(c) 0.795 atm	(d) 1.14 atm	(e) 0.864 atm

20. What is the pH of a solution prepared by mixing 50.0 mL of 0.300 M HCl with 450.0 mL of 0.400 M HIO₃? $[K_a(HIO_3) = 1.6 \times 10^{-1}]$

(a) 1.52

(b) 0.80

(c) 0.72

(d) 0.89

(e) 0.66

21. Sodium carbonate can be made by heating sodium bicarbonate:

 $2NaHCO_3(s) \rightarrow Na_2CO_3(s) + CO_2(g) + H_2O(g)$

Given that $\Delta H^{\circ} = 128.9 \text{ kJ/mol}$ and $\Delta G^{\circ} = 33.1 \text{ kJ/mol}$ at 25°C, above what minimum temperature will the reaction become spontaneous under standard state conditions?

(a) 0.4 K

(b) 3.9 K

(c) 321 K

(d) 401 K

(e) 525 K

22. Under standard-state conditions, which of the following half-reactions occurs at the cathode during the electrolysis of aqueous nickel sulfate at 25°C?

(a) $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$ (b) $Ni^{2+} + 2e^- \rightarrow Ni$

(c) $2H_2O + 2e^- \rightarrow H_2 + 2OH^-$

(d) Ni \to Ni²⁺ + 2e⁻

(e) none of these

23. Which of the following complex ions would absorb light with the longest wavelength?

(a) $[Co(H_2O)_6]^{2+}$ (b) $[Co(NH_3)_6]^{2+}$ (c) $[CoF_6]^{4-}$ (d) $[Co(CN)_6]^{4-}$ (e) $[Co(en)_6]^{2+}$

24. In the following reaction, identify X.

$$^{10}_{5}$$
B(X, α) $^{7}_{3}$ Li

(a) α

(b) n

(c) p

(d) $_{+1}^{0}e$

(e) B

25. Which is the product of the reaction of one mole of HCl with one mole of 1-butyne?

(a) 1-chloro-1-butene

(b) 1-chloro-2-butene

(c) 2-chloro-1-butene

(d) ethyl chloride + acetylene

(e) 1-chloro-butadiene

99 學年	度_生醫工和	呈與環境科	學系で	乙組(環	境分子	科學組	碩士班/	八學考試	
科目	普通化學	科目代碼_	2401	_共_6	頁第_	5 頁	*請在	【答案卷卡】	內作笠

(II) Complete this paragraph with the words and phrases that follow. (13%) All acids have certain properties in common. When dissalved in vector the common land.
All acids have certain properties in common. When dissolved in water they produce a
taste, they turn from blue to red, and they react with metals such as iron and to
liberate Water solutions of bases, on the other hand, taste, turn litmus from
to, and produce a sensation when rubbed between the fingers. As long as
we are dealing with water solutions of these substances, we can use the definition of an
acid and a base, which states that an acid is any substance that releases, while a base is any
substance that releases The definition eliminates the need for water in the
definition by defining acid-base reactions in terms of a from an acid to base, regardless of solvent.
III) Tritium is a radioisotope of hydrogen and has a half-life of 12.3 years. If you initially had 1.0×10^{-7} mole of tritium, please
(a) calculate the decay rate of the sample. (3%)
(b) how many moles of tritium would be left after 78 years? (3%)
IV) For the reaction $3H_2(g) + N_2(g) \iff 2NH_3(g), K_c = 9.0 \text{ at } 350^{\circ}\text{C}.$ (a) Calculate K_p . (2%)
(b) Calculate ΔG° at 350°C. (2%)
(c) What is ΔG at this temperature when 1.0 mol NH ₃ , 5.0 mol N ₂ , and 5.0 mol H ₂ are mixed in a 2.5 L reactor? (2%)
(d) In what direction does the reaction proceed under the conditions in part c? (2%)
V) An unusual atmospheric reaction leading to ozone destruction is $CF_3O + O_3 \rightarrow CF_3O_2 + O_2$,
the analysis of which has yielded an Arrhenius frequency factor (A) and activation energy of 2.0×10^{-12} cm ³ molecule ⁻¹ s ⁻¹ and 11.6 kJ/mol, respectively. Calculate the rate constant for this reaction at an altitude of 35 km, where the temperature is -34 °C. (6%)
VI) The base ionization constant for NH ₃ is 1.8×10^{-5} at 25 °C.
(a) Determine the hydroxide ion concentration and the percentage ionization of a 0.150 M solution of ammonia at 25 °C. (3%)
(b) Determine the pH of a solution prepared by adding 0.005 mol of proton to the solution in part (a)? (3%)

99 學年度 生醫工程與環境科學系 乙組(環境分子科學組) 碩士班入學考試
科目 普通化學 科目代碼 2401 共 6 頁第 6 頁 *請在【答案卷卡】內作答

- (VII) Potassium bromide, KBr, crystallizes like NaCl in a face-centered lattice. The ionic radii of K⁺ and Br⁻ ions are 133 pm and 195 pm, respectively. Assuming that all Br⁻ ions are positioned in the face and corners of the unit cell, while the K⁺ ions are positioned along the edge alternating between anions, calculate the length of a unit cell edge. (5%)
- (VIII) Explain how the number of protons and neutrons in a radioactive nucleus can be used to predict its probable mode of decay. Illustrate your answer with a schematic graph, properly labeled, showing stable nuclides (nuclei) in relation to number of protons and neutrons. (6%)