97 學年度 生醫工程與環境科學 系 (所) 乙(環境分子科學) 組碩士班入學考試 科目_有機化學及物理化學_ 科目代碼 _2604 共_6_頁第_1_頁 *請在【答案卷卡】內作答 一、有機化學 單一選擇題 (50%;每題 2.5 分;務必以答案卡作答;答錯不倒扣) - 1) Of the following compounds, which has the greatest resonance energy? - (A) 2-Butene - (B) Cyclohexene - (C) 1,3-Butadiene - (D) 2,3-Butanedione - 2) Which of the following compounds should be expected to have the highest boiling point? - (A) CH₃CH₂OCH₂CH₃ - (B) CH₃CH₂COCH₃ - (C) CH₃CH₂CH₂CH₂OH - (D) CH₃CH₂CH₂COOH - (E) CH₃CH₂CH₂CH₂CH₃ - 3) The conversion of 1-butene to 1-butanol is accomplished in synthetically useful yield by treating the 1-butene with - (A) HCl followed by H₂O - (B) B₂H₆ followed by H₂O₂ and NaOH - (D) KMnO₄ - (E) $H_2(Pt)$ in H_2O - 4) A hexapeptide is hydrolyzed to the dipeptides Ileu-Val, Ala-Pro, and Lys-Leu. Carboxypeptidase acts on the hexapeptide to liberate valine, and 2, 4-dinitrofluorobenzene reacts with the hexapeptide to yield, after hydrolysis, 2, 4-dinitrophenylalanine. Which of the following is the amino acid sequence of the hexapeptide? - (A) Ala-Pro-Lys-Leu-Ileu-Val - (B) Val-Ileu-Lys-Leu-Pro-Ala - (C) Ileu-Val-Ala-Pro-Lys-Leu - (D) Val-Ala-Pro-Lys-Leu-Ileu - (E) Lys-Leu-Ala-Pro-Ileu-Val 97學年度_生醫工程與環境科學_系(所)_乙(環境分子科學)_組碩士班入學考試 科目 有機化學及物理化學 科目代碼 2604 共 6 頁第 2 頁 *請在【答案卷卡】內作答 - 5) Secondary amines react with the nitrosonium ion to generate: - A) diazonium salts - B) oximes - C) N-nitrosoamines - D) imines - E) anilines 6) $$\begin{array}{c} CH_3 & CH_2 & CH_3 \\ H-C-CH_2 & CH_2 & CH_3 \\ H_3C & CH_2 & CH_3 \end{array}$$ The formula above represents a member of the class of compounds known as - (A) terpenes (B) alkaloids (C) carbohydrates (D) steroids - (E) vitamins - 7) Which of the following reagents should be used to convert an internal alkyne to an α -diketone? - A) KMnO4, H2O, neutral - B) 03 then H2O - C) Sia₂BH then H₂O₂ - D) Na, NH3 - E) HgSO4, H2SO4 - 8) Both (*E*)- and (*Z*)-hex-3-ene can be subjected to a hydroboration-oxidation sequence. How are the products from these two reactions related to each other? - A) The (E)- and (Z)-isomers generate the same products but in differing amounts. - B) The (E)- and (Z)-isomers generate the same products in exactly the same amounts. - C) The products of the two isomers are related as constitutional isomers. - D) The products of the two isomers are related as diastereomers. - E) The products of the two isomers are not structurally related. 97 學年度_生醫工程與環境科學_系(所)_乙(環境分子科學)_組碩士班入學考試 科目_有機化學及物理化學_科目代碼_2604_共_6_頁第_3_頁 *請在【答案卷卡】內作答 - 9) Which of the following carbocations would most easily undergo a 1,2-hydride shift? - (A) (CH₃)₃C⊕ - (B) C₆H₅CHCH₃ - (C) CH₃CHC(CH₃)₃ - (D) CH₃CHCH(CH₃)₂ - ⊕ (E) (CH₃)₂CCH₂CH₃ 10) $$\begin{array}{c|c} & O \\ & \parallel \\ & \parallel \\ & 0 \\ & \parallel \\ & O \\ & HC-O-C-R_2 \\ & \downarrow \\ & O \\ & H_2C-O-P-O-R_3 \\ & \downarrow \\ & O_- &$$ Phospholipids of the general formula shown above are arranged in lipid bilayers visualized as follows: The polar heads which are exposed to an aqueous environment represent the - (A) fatty acid group R_1 only - (B) fatty acid groups R₁ and R₂ - (C) phosphate diester function - (D) carbonyl function of the carboxylic acid - (E) glycerol backbone 97 學年度_生醫工程與環境科學_系(所)_乙(環境分子科學)_組碩士班入學考試 科目 有機化學及物理化學 科目代碼 _2604 共_6_頁第_4_頁 *請在【答案卷卡】內作答 | 科目 | 有機化學及物理化學 | _ 科目代碼 | 2604 共_ | 6頁第_ | 4 頁 *請在 | 【答案卷卡】內作 | |--|---|------------------------------|-----------------|--------------|---------------------|--------------------| | | | | | | | | | 11) | The rate of a reaction typic | ally increases as | the temperati | are increase | s because: | | | 11/ | A) the A term in the Arrhenius equation increases. B) the fraction of molecules with kinetic energy greater than E _a increases. | | | | | | | | | | | | | | | | C) the activation energy | | | | | | | | D) the activation energy | | | | | | | | E) the molecules make m | | th the wall of | the reaction | n vessel. | | | 10) | Which of the following cor | rectly ranks the c | rycloalkanes i | n order of i | ncreasing ring stra | ain per methylene? | | 12) | A) cyclopropane < cyclol | | | | | | | | B) cyclohexane < cyclop | | | | | | | And a second sec | C) cyclohexane < cyclob | | | | | | | | • | | | | | | | D) cyclopentane < cyclopropane < cyclobutane < cyclohexane E) cyclopropane < cyclopentane < cyclobutane < cyclohexane | | | | | | | | | E) cyclopropanie < cyclo | Jenune veyeros. | ataric (c) cro. | . 107101210 | | | | 13) | The Ka of formic acid is 1. | 7×10^{-4} . The pKa | of formic aci | id is | | | | | | 3) 4.0 | | * | | E) 10.3 | | 14) | Which of the following is a | condensation po | olymer? | | | | | | A) poly(ethylene terepht | halate) | | | | | | | B) poly(tetrafluoroethyle | ene) | | | | | | | C) polystyrene | | | | | | | | D) poly(vinyl chloride) | | | | | | | | E) poly(methyl α-metha | crylate) | | | | | | 15) | Which of the following ter | ms best describes | s the compou | nd below? | | | | | CH3(CH2)7CH=CH(CH2 | .)7CO2H | | | | | | | A) an unsaturated fatty a | acid | | | | | | | B) a triglyceride | | | | | | | | C) a synthetic detergent | | | | | | | | D) a micelle | | | | | | | | E) isoprene | | | | | | | 16 |) Peptide bonds are: | | | | | | | | A) ester linkages. | | | | | | | | B) imido linkages. | | | | | | C) ether linkages.D) amide linkages.E) disulfide linkages. #### 紙 題 立清華大 或 97 學年度_生醫工程與環境科學_系(所)_乙(環境分子科學)_組碩士班入學考試 科目_有機化學及物理化學_ 科目代碼 _2604 共_6_頁第_5_頁 *請在【答案卷卡】內作答 - 17) Which of the following compounds undergoes dehydrohalogenation most rapidly in boiling ethanol by an E_1 mechanism? - (A) $CH_3CBr = C(CH_3)_2$ - (B) CH₃CHBrCH(CH₃)₂ - (C) (C)—CHBrCH₃ - (D) O₂N CHBrCH₃ - (E) CH₃O CHBrCH₃ - 18) The reduction of cyclohexanone in isopropyl alcohol in the presence of aluminum isopropoxide can be used to prepare cyclohexanol in a good yield only if which of the following conditions is fulfilled? - (A) The reaction is carried out at 0° C. - (B) The reaction is irradiated with sunlight. - (C) The acetone formed in the reaction is distilled away as the reaction is taking place. - (D) The cyclohexanol is distilled away from the reaction mixture as the reaction is taking place. - (E) The reaction is catalyzed with mercuric chloride. - 19) Which of the following molecules is chiral? - A) 1,2-pentadiene - B) 2,3-pentadiene - C) 2-methyl-2,3-pentadiene - D) 2-chloro-4-methyl-2,3-pentadiene - E) none of the above molecules is chiral - 20) The preferred conformation of trans-1, 4-dimethylcyclohexane has the cyclohexane ring in the - (A) chair form with both methyl groups equatorial - (B) chair form with both methyl groups axial - (C) chair form with one methyl group axial and one equatorial - (D) boat form with the methyl groups pointing toward the center of - (E) boat form with the methyl groups pointing away from the ring 97 學年度_生醫工程與環境科學_系(所)_乙(環境分子科學) 組碩士班入學考試 科目_有機化學及物理化學_科目代碼_2604_共_6_頁第_6_頁 *請在【答案卷卡】內作答 二、物理化學 計算問答題 (50%;務必作答於答案卷內) - 1. Define the "entropy" and show that entropy is a state function from the first law of thermodynamics, by considering (a) an ideal gas; (b) arbitrary substance. (15%) - **2.** One mole of an ideal gas expands isothermally and reversibly from 90 to 300 L at 300K. (a) Calculate q, w, ΔU , ΔH and ΔS for this system. (b) If the expansion is carried out irreversibly by allowing the gas to expand into an evacuated container, what are the values of q, w, ΔU , ΔH and ΔS for this process? (20%) - 3. (a) The ionization energy E_i of hydrogen atom is the energy required to remove the electron from the atom in its ground state to a position very far from the nucleus. Calculate the E_i of hydrogen atom in terms of electron volts. $$E_{n} = -\frac{m_{e}e^{4}}{8\varepsilon_{0}^{2}h^{2}n^{2}}$$ where electron mass $m_e = 9.109 \times 10^{-31}$ kg; electronic charge $e = 1.602 \times 10^{-19}$ C; permittivity of vacuum $\varepsilon_0 = 8.854 \times 10^{-12}$ C²J⁻¹m⁻¹; Planck constant $h = 6.626 \times 10^{-34}$ Js; n is the principal quantum number. - (b) Use the D_0 (spectroscopic dissociation energy) value of H_2 (4.478 eV) and the D_0 value of H_2^+ (2.651 eV) to calculate the first ionization energy of H_2 (that is, the energy needed to remove an electron from H_2). - (c) Plot the potential energy curves for the ground electronic states of H_2 and H_2^+ versus internuclear distance given that the equilibrium distance in H_2^+ is 106 pm and that of H_2 is 74.1pm. Illustrate the figure with previous data as clear as possible. (15%)