_51		\= =		Γ.	욛		FF	· ·
返	\ /	冶	華		ولينطيار		題	新
24	-1/-	1173			子	니니	N(Z)	-T

九十二學年度 原子科學 _系(所)____丙__ _組碩士班研究生招生考試

科號 3402 共 2 頁第 1 頁 *請在試卷【答案卷】內作答 應用數學

Solve the following ordinary differential equation. Please give all steps in details, and give your answer in the explicit form.

(a)
$$y' + 2xy = 2x/y$$
, $y(0) = 2$. (8 points)

(b)
$$y'' + 3y' + 2y = 2u(t-2)$$
, $y(0) = 0$, $y'(0) = 0$. (8 points)

(c)
$$y'' + 4y = r(t)$$
, $y(0) = 0$, $y'(0) = 3$. (10 points)
$$r(t) = \begin{cases} 3\sin t & 0 < t < \pi \\ -3\sin t & t > \pi \end{cases}$$

$$r(t) = \begin{cases} 3\sin t & 0 < t < \pi \\ -3\sin t & t > \pi \end{cases}$$

A radioactive substance X, whose half-life is 1hr, decay to a stable substance Y. Please find the amount of X and Y as a function of time, assume the initial amount of X is Ao and the initial amount of Y is 0. (14 points)

Matrix
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$

- (a) Diagonalize A. Show the details of your work. (6 points)
- (b) Use the result in (a) to find A^4 . (6 points)

Consider the following linear system

$$-2x_1 + 2x_2 - 3x_3 = 20$$

 $2x_1 + x_2 - 6x_3 = 4$, which can be written as $\mathbf{A}\mathbf{x} = \mathbf{b}$
 $-x_1 - 2x_2 = 1$

- (a) Determine the rank of the coefficient matrix A. (2 points)
- (b) Find the inverse of the coefficient matrix A. (4 points)
- (c) Find the solution. (4 points)

P.		湛	#	大	圝	合	ء	糸
艾	ĨΙ	海	羋	\wedge	字	口口	咫	小

九十二學年度<u>原子科學</u>系(所)<u>两</u>組碩士班研究生招生考試 科目<u>應用數學</u>科號<u>3402 共 2 頁第 2 頁 *請在試卷【答案卷】內作答</u>

5. Evaluate
$$\iint_{S} \mathbf{F} \cdot \hat{\mathbf{n}} dA, \quad \mathbf{F} = y \,\hat{\mathbf{i}} + x \,\hat{\mathbf{j}} + z \,\hat{\mathbf{k}} \quad \text{S: } x^{2} + y^{2} = 1, -1 \le z \le 1. \quad (10 \text{ points})$$

6. Find the eigenvalues and the corresponding orthonormal set of eigenfunctions of the following problem. (10 points)

$$y'' + \lambda y = 0$$
, B.C. $y(0) = 0$, $y(L) = 0$.

7. Find the Fourier integral of the given function. (10 points)

$$f(x) = \begin{cases} e^{-x} & x > 0 \\ 0 & x < 0 \end{cases}$$

Use the result to evaluate $\int_0^\infty \frac{\cos wx + x \sin wx}{1 + x^2} dx$.

8. Evaluate the following integral by using the residue theorem.

$$\oint_{c} \frac{4z-6}{z^{3}-4z^{2}+3z} dz \quad \text{and C:} \quad \left|z-\frac{1}{2}\right| = 1 \quad \text{clockwise.} \quad (8 \text{ points})$$