	九十	學年度	₹ <u>/</u> ?	<u> </u>	<u>料</u>	_學	系	(所)_		<u>ک</u>	組	武士班研	究生招	生考試.
 科目	普	通	1 <u>L</u>	學	科	₩ 34c				· 1				案卷】內作答
Part	t			, , , ,	;i	<i>7</i> 76 <u>~ .</u>	<u> </u>		5~(./)~	<u>, , , , , , , , , , , , , , , , , , , </u>	_54 .	<u> 6941.0+</u>	<u> </u>	来位』/ IIF E
[actions	s bets	ween at	oms ic	ine and m	السمام	lee deter	i	-hi-	-T			nportant aspec
of	each ty	ne of i	inter	action a	re its r	elative str	oroth	how re	nidly i	Chemic	ar pro	perties.	The in	nportant aspec istance, and
w	hether it	t is din	ectio	nal or r	not. P	lease (a) i	llustra a	te the v	asjons hiera	it meete	esta w	/III III;T(easing o	istance, and on chemical
sp	ecies, (l	b) arra	nge t	he inte	raction	s in order	of dec	weasing	etrene	uth and Thise)1 (TIC)	ractions	acung c	n chemical
rel	lationsh	ip betv	ween	potent	ial ener	rgy and dis	stance	for eac	h tame	of int	: (G) W. 202 0tiv	The up; ;	mainem:	ancai
2. T	he react	ion <i>cis</i>	:-2-b	utene to	trans-	-2-butene	is first	order i	n both	directi	Ons.	лацроз At 25°(Sidie. (Z	,U%) miliheium
co	onstant i	s 0.40	6 and	d the fo	rward r	rate consta	mt is 4	1.21×10	⁻⁴ s ⁻¹ .	Starti	ng wit	h a sam	nie of th	ie pure cis
iso	omer wi	ith [<i>cis</i>	g] _o = 6	0.115 n	uol·dm	-3, how lor	ng woi	uld it tal	ke for	half the	equi)	librium :	mount (of the trans
iso	omer to	form?	(209	%)			_		-		1		***************************************	or the many
Part														
Direc	ctions: I	Each o	f the	questic	ons or i	лсоmplete	e stater	ments b	elow i	is follov	wed by	y five su	ggested	answers or
comp	pietions	. Cho	oose	the one	that is	s best in ea	ich cas	se.			-	,		
	stions (e		_											
I. 1	The equi	libriur	n coi	ostant f	or the a	utoprotol	ysis of	f water i	is 1. 0 0)×10 ⁻¹⁴ :	at 25 °	C. Th	e pH of	a 1.00×10 ⁻⁹ -
n	nolar H	Cl sofu	ution	at 25 °C	C is clo	osest to wh	iich of	f the fol	lowin;	g?			-	
٠.	1) 12	<u> </u>	(b)		•	(c) 7		(d) 6 (
				/ing sar	nples c	ontains th	e smal	liest nur	nber c	of atom:	s?			
) lgof													
) 1 g of													
) igof													
	l) l g of	. ,												
) l g of													
3. A	ın ore co	ontains	s 1.34	# % of t	the min	eral argen	itite, A	1g ₂ S, by	weig	ht. Ho)w ma	ny gram	s of this	ore would
h	ave to b	e proc	essec	d in ord	ler to ob	btain 1.00	g of p	ure soli	d silve	er, Ag?				
)74.6 g	-4.	(b) 8	5.7 g	(c)) 107.9 g	•	(d) 134.6	0 g	(e) 1	171.4	g		
4. IV10	etnyi be	пиоате	: 13 p	repared	by the	reaction i	betwee	en benza	oic aci	id and n	nethar	iol, acco	rding to	the equation
						COOH + C					· H ₂ O			
Ťn	An avea		÷ 2.4 .	4 61		zoic acid N			-	реплоате				
U 3	an expe	:Timeni _r =	[24.4 	f got b	enzoic	acid were	reacte	ed with	70.0 r	nL of C	H₃OH	I. The	density	of CH ₃ OH is
U. /		ìL . :-:-	ine	metnyı	benzoa	ate produc	ed in t	this reac	ction h	nad a ma	ass of	21.6 g.	What v	was the
	rcentage) 91.7 %		_			/		-						
			(D)	79.5 %	(c)	71.5 %	(d) 2	21.7 %	(e)	9.17%	ı			
71. TT	The sold.	sum (1)	11) (2	iroonau	e penta	hydrate is	heater	d strong	gly it d	iecomp	oses to	yield c	arbon di	ioxi de, cer ium
u.) de	II) Väius	e, aucu einar 1	Wate.	r vapor.	. Hov	w many mo	oles of	f carbon	ı dioxi	ide can	be obt	ained by	omple comple	etely
	1.50	mig i	_			(III) carbor				-				
(4)	1,50		(0)	3.00	€0	c) 4.50	(6	d) 6.00		(e) 7.50)			

	九十	學年度	ŧ/	9 .	<u>子</u> 木	4 4	_系((所)		ر_	組碩士	班研究	生招生	考試
科目	善	通	化	粤	科	340	<u>1</u> 典	\$_	頁第_	2	夏 🏥	在試卷	【答案	卷】內作答
6. A	At room	tempe	rature	mercu	ry has a	a density	of 13.0	6 g cm ⁻³ ,	while	liquid	bromof	orm, Cł	IBr ₃ , has	s a density o
														a column of
i i	mercur	y 200-i	mm hi	gh?										
(a) 94.1	mm	(b)	272.0	mm (c) 42.5 c	m	(d) 94.1	cm	(e) 272	.0 cm			
7. /	A certai	n solid	has a	density	of 4.0	g/cm³.	An ed	ucated g	uess o	f the va	due of t	he dens	ity of the	e liquid form
١ ،	of this	substan	ice wo	uld be										
_	-	_		_	•	c) 1.8 g/c		• •		7.	_			
						-					weight	, has a d	ensity o	f 0.9808
	g·mL ⁻	at 20 °				lality of o								
`	a) 0.05				-	c) 2.555								
ŀ		_				be disso					_		_	
								hich of t	he fol	lowing	strong	acids co	uld you	dissolve all
		-	•		-	ar solutio								
•	a) HCl			_		c) HBr		(d) H ₂ SC						
				ing ins	oiuble e	electroly	tes will	NOT be	signi	ticantly	more :	soluble i	n 1.0 M	HNO3 than
}		re wate												
	(a) Fe			. *		AgCN	-	-		_				
11.				-		about M							. ,	.
1						ed on, all		-	nove to	oward t	he posi	tively ci	narged p	late.
		_			_	electron		_			., .			d
						ield, the	speed v	with whi	ch the	ctop 12	nis dep	ends on	y upon t	ine
		eleratio	•					L						
		-				ops, wer						a barna.	Aan aalli	ding with
ļ			-	DECUM	positi	very char	Sea sm	n some t	æcom	e negat	ivery cr	rat Rezri a	tiet com	iding with
12	•	eous io		a desig	natione	listed he	low w	thich doe	e NO	r đạc cri	iha an a	tlawed (· state for	an electron
ı	an aton	_				l=2, m		inch doc	S 140.	1 (10501)	100 011 0	IIOWOR .	SIZIC IVI	an cicouon
'	an awi	.1.				l=1, m								
					-	l=0, m	•							
						l=2, m	•							
			V.			l = 3, m	•							
	(a) I a	wł V				III and I	•	i) I and I	VJ	(e) III a	and V			
13.							-	-				ic orbita	ls in for	ming bonds
	(a) H ₂ ;		(b)	-		Cl ₂ O			_					•
14.				-		ibes the				•	te ion,	SO ₃ ²⁻ ?		
	(a) <i>sp</i>	•	(b)	_		sp^3		i) dsp²		e) d ^e sp ³		-		
	_		-											

	九十學	年度_	原		科	4	系(所)		<u>۽ ٽ</u>	且碩士班研究生招	性考試
科目	善	連	化	簲	科號	340	1 # .	ち 百筮	3 7	頁 <u>*講在試卷【答</u>	家券 】內作签:
. ,			ion	202						ionate ion, $S_4O_6^{2-}$.	
						_				ompletely with the	
	or a somm millimoles	_					JOJ WELE	·Мипеа	i to react c	omplowly with the	212 210W Hully
'	(a) 1.639	•		.278			(d) 6.5	i6 1	(e) 9.834		
16	During the		` '		. ,		` '	,0 ((¢) 7.054		
	(a) Zinc pl		-			ic minai	1609				
	(a) Zinc pi (b) Zinc pl										
	(c) Nitroge					cathed	e.				
	(d) Hydrog	_	-								
	(e) Oxyger	_	_								
		- :	_				h an agues	ous solut	tion of Cu	SO ₄ , how long wil	l it take to
	deposit 0.2				_	_	_				
	-					-			•	(e) 0.893 min	
	f ΔG _f °(HI,									, -	ļ
						-					
	2 HI(g) ≠	H ₂ (g)	+ I ₂ (s)							
	(a) 24		(b) 3.	9	(c) 2.0	I	(d) 0.50	• (e) 0.25		
	f a process							`	· -		•
	(a) AS > 0	ı	(b) Δ	S < 0	(c) Δ <i>H</i>	!<0	(d) ΔG	>0 ($e) \Delta U = 0$		
20. 1	Which of t	he foll	owin	g statem	ents abo	out the	spontaneo	us reacti	on occurri	ing in a galvanic co	ell is always
	rue?									-	-
	(a) $\Delta E_{\text{cell}}^{\circ}$	> 0, ∆	G° <	0, and <u>(</u>	2 <k< td=""><td>(b</td><td>o) ΔE_{cell}° ></td><td>0, ΔG° :</td><td>> 0, and Q</td><td>Q < K</td><td></td></k<>	(b	o) ΔE _{cell} ° >	0, Δ G° :	> 0, and Q	Q < K	
	(c) ΔE_{coll} °	> 0, Δ	.G°>	0, and (Q > K	(d	l) $\Delta E_{cell} > 0$), ΔG <	0, and $Q >$	> K	
	(e) $\Delta E_{\rm ceil}$ >	• 0, Δ0	3 < 0,	, and Q	< K						
21. (Concentrat	ed am	moni	a solutio	n is add	leđ to a	n aqueous	solution	of each o	f the following sal	ts. In which
•	one does a	precip	itate	form?							į
	(a) Ni(NO	3)2	(b) C	uSO ₄	(c) Mg	(NO ₃) ₂	(d) CoS	O ₄ (e) ZnCl ₂		
22. /	A compour	nd con	tains	two typ	es of ato	ms, X	and Y. It	crystall	izes in a c	ubic lattice with X	atoms at the
C	comers of t	the uni	it cell	s and Y	atoms a	t the bo	ody center:	s. The	simplest f	ormula of this con	pound is
	(a) X ₈ Y						-		_		.
23. 1	The activity	y of 14	C in l	iving bo	nes is 1	5.3 dpn	n/g of carb	on. Th	ne half-life	of 14C is 5730 yr.	A fossi!
			id in 1	Hsinchu	county	has an	activity of	3.83 dp	m/g of car	bon. How many	years ago did
	he animal										
	(a) 5730		` '		` '		(d) 1430		•		
								m a whi	te precipit	ate with chloride is	on which will
	um black o			-	•						
(a	a) lead (b) :	silver	(c) tù	n (d) sod	lium (e)	mercus	rjy				

	九十	學年度	原	<u> </u>	科	\$	_系 (所)		<u>گ</u>	_組碩士班研究生招生考試
科目。	番	通	化	續	_科號_	340	<u> </u>	頁第_	4	頁 *請在試卷【答案卷】內作答
25. V	/hich o	of the foll	owing	g reacti	ons whe	an heate	d quickly	produces	small	amounts of chlorine gas?
(a)	NaCl	+ HNO ₃	(l	o) NaC	l + KMı	1O ₄	(c) NaCl	+ H ₂ SO ₄		
(d)	HCl-	+ Br ₂	(6	HCI	+ KMn(04				
26. V	/hich o	of the foll	owing	g is the	most ab	undant	element in	limeston	ies?	
(a)) Si	(b) A	۱ (۵	c) Fe	(d) M ₃	g (e)	Ca			
27 F	or the	nanamier	ung tita	ration o	f a wea	k acid	the desirah	le nroner	ties Af	a solvent include all of the following

- (a) a moderate dielectric constant
- (b)good proton-accepting ability
- (c)adequate solubility of the acid
- (d)a low autoprotolysis constant
- (e)low vapor pressure

EXCEPT

- 28. Which of the following samples of reducing agents is chemically equivalent to 25 mL of 0.20-normal KMnO₄ to be reduced to Mn²⁺ and H₂O?
 - (a) 50 mL of 0.10 MH₃AsO₃ to be oxidized to H₃AsO₄
 - (b) 25 mL of 0.20 MH₂O₂ to be oxidized to H⁺ and O₂
 - (c) 25 mL of 0.10 M SnCl₂ to be oxidized to Sn⁴⁺
 - (d) 25 mL of 0.10 M FeSO₄-7H₂O to be oxidized to Fe³⁺
 - (e) 100 mL of 0.10 MH₂C₂O₄·2H₂O to be oxidized to CO₂ and H₂O
- 29. Two reactions that may occur at the cathode during the electrolysis of aqueous NaCl are indicated below
 - (1) Na' + $e^- \rightarrow$ Na E° reduction = -2.71 V

(2) $2 \text{ H}_2\text{O} + 2 e^- \rightarrow \text{H}_2(g) + 2 \text{ OH}^-$ E° reduction = -0.83 V

The first reaction occurs if the cathode is mercury; the second reaction occurs if the cathode is iron. Part of the accepted explanation for these observations includes the fact that

- (a) sodium and iron form a liquid alloy
- (b) iron catalyzes the reaction of sodium with water
- (c) sodium dissolves in iron and is removed before it has time to react
- (d) the reduction potential indicates the second reaction is more probable
- (e) the overvoltage for hydrogen evolution on mercury can be in excess of 1.5 volts
- 30. The freezing point of water is lowered by the addition of a soluble substance such as sodium chloride.

This lowering is considered to be a consequence of the fact that

- (a) the partial molal volume of ice is greater than the partial molal volume of liquid water at the freezing point of the solution
- (b) the vapor pressure of pure ice is less than that of the water in solution at the normal freezing point of pure ice
- (c) the chemical potential of water in the solution at the normal freezing point of water is less than that of pure ice
- (d) sodium chloride dissociates into ions when it dissolves in water
- (e) the dissolving of sodium chloride in water is an exothermic process

九十學年度 原 子 科 學 系(所) 乙 組碩士班研究生招生考試

科目 善 通 化 學 科號 3401 共 5 頁第 5 頁 *請在試卷【答案卷】內作答

A. Information

PERIODIC CHART OF THE ELEMENTS

	•
H -	Ho
1.0079	I [
	 4,003
	Ŕ Ō F Ña
6.941 9.002 10.01 12.0m 10.01	007 8,00 7000 20,779
' aγ'. a≌_ 	E 性 <u>此 申</u>
[22 99 94 3D]	. 2 24 24
P 20 20 20 20 20 20 20 20 20 20 20 20 20	974 32.08 35.453 39.546
K Ca Sc TT V Cr Min Fa Co Mi Cu Za Ga Ga	So Br Kr
39.00 40.00 94.90 47.90 50.94 52.00 34.94 35.65 54.93 (58.50 53.55 48.76 48.76 48.76	1 +-
前 秦 章 秦 前 森 桑 奥 奥 奥 奥 奥 奥	
25 47 47 42 Sm at 01 00 00 11 14 15 15 15 15 15 15 15 15 15 15 15 15 15	あ で だ
	75 427.60 (26.90 (31.30)
	B Po Al Rn
1(3.7 to 1)37 33 FUE Of ETA Antion or language l	
# 1 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	990 (209) (1210) (1222)
[1223] (2263) (227) Ce Pr Nd Pm Sen Eu Gel Th Dr Ha E	20 ti
100 mm 10	Tm Yb Lu
[HO,R] MOSI M4.24 (H5) 50.4 (152.0 157.25 158.83 152.50 164.93 157.25	M4.93973.04174.97
Applican States	
	107 TOT 105
STATE OF THE PROPERTY OF THE PARTY OF THE PA	Med (No Lr
{292.0 291.0 295.05 237.0 (244) (243) (247) (247) (247) (250) (252) (257)	(256) (259) (260)

Values of Some Physical Constants

Constant	Symbol	Value			
Atomic mass constant	<i>m</i> _	3.660 5402 × 10 ⁻⁴⁷ kg			
Avogadro constant	· NĀ	6.022 1367 × 10 ²⁵ mol ⁻¹			
Bohr magneton	$\mu_0^2 = e\hbar/2m_e$	9.274 0154 × 10 ⁻²⁴ J · T ⁻¹			
Bole radius	$a_0 = 4\pi \epsilon_0 h^2 / m_e e^2$	5.291 772 49 × 10 ⁻¹¹ m			
Boltzmann constant	k.	£380 658 × 10 ⁻²⁵ f · K ⁻¹			
	•	0.695 038 cm ⁻¹			
Electron rest mass	m,	$9.1093897\times10^{-31}\mathrm{kg}$			
Gravitational constant	Ġ	$6.672.59 \times 10^{-11} \text{ m}^3 \cdot \text{kg}^{-1} \cdot \text{s}^{-2}$			
Molar gas constant	R	8.314 510 J · K ⁻¹ · mol ⁻¹			
_		0.083 1451 dm3 - bar - K-1 - mol-1			
		0.082 0578 dm3 - atm - K-1 - moi-1			
Molar volume, ideal gas					
(one bar, 0°C)		22.711 08 L · mol ⁻¹			
(one atm, (°C)		22.414 09 L · mol-1			
Nuclear magneton	$\mu_{\rm N} = \epsilon \hbar/2m_{\rm o}$	5.050 7866 × 10 ⁻²⁷ J · T ⁻¹			
Permittivity of vacuum	60	8.854 187 816 × 10-12 C2 · J-1 · m-			
	4я ε₌	$1.112.650.056 \times 10^{-10} \text{ C}^2 \cdot \text{ J}^{-1} \cdot \text{m}^{-1}$			
Planck constant	h ·	6.626 0755 x 30 ⁻³⁴ J - s			
	ħ	1.054 572 66 × 10 ⁻¹⁴ J·s			
Proton charge	¢ .	1.602 177 33 × 10 ⁻¹⁹ C			
Proton magnetogyric ratio	γ,	2.675 221 28 x 10 s-1 T-1			
Proton rest mass	m_	1.672 6231 × 10 ⁻²⁷ kg			
Rydberg coastast (Bohr)	$R_{\infty}=m_ee^4/8e_0^2h^2$	2.179 8736 × 10 ⁻¹¹ J			
	- 20 - 11/2 / Andles	109 737.31534 cm ⁻¹			
Rydberg constant (expti)	R _{ef}	109 677,581 cm ⁻¹			
Speed of light in vacuum	c.	299 792 458 m·s ⁻⁾ (defined)			
Stefan-Boltzmaan constant	$\sigma = 2\pi^5 k_{\parallel}^6 / 15 h^3 c^2$	5.670 51 × 10 ⁻⁸ J·m ⁻² · K ⁻⁴ · s ⁻¹			

Conversion Factors for Energy Units

	<u> joule</u>	は∙mol ⁴	e۷
l joule	ī	6.022 137 × 10 ³⁰	6.241 506 × 10 ¹⁸
l k5 · mol ^{−1}	1.660540×10^{-21}	Ī	1.036427×10^{-2}
l eV	$1.602\ 177\times 10^{-19}$	96.4853	1
	4.359748×10^{-18}	2625.500	27.2114
lE _p . Ican⁻¹	1.986447×10^{-23}	$1.196\ 266\times 10^{-2}$	1.239842×10^{-4}
l Hz	6.626 076 × 10 ⁻³⁴	$3.990\ 313 \times 10^{-13}$	$4.135\ 669 \times 10^{-15}$