を用数学 科號 3903 共 2 頁第 / 頁 *請在試卷【答案卷】內作答

1. Please solve the following initial value problems.

(A) 5%
$$\frac{dy}{dx} + 2xy = 4x, \qquad y(0) = 3$$

(B) 5%
$$2x\frac{dy}{dx} - 10x^3y^5 = y, y(1) = 1$$

2. Please solve the following initial value problems.

(A) 5%

(A) 5%

$$x^{2} \frac{d^{2}y}{dx^{2}} - x \frac{dy}{dx} + 2y = 0, y(1) = 1, y'(1) = 1$$
(B) 5%
$$x^{2} \frac{d^{2}y}{dx^{2}} - 2x \frac{dy}{dx} + 2y = \frac{24}{x^{2}}, y(1) = 4, y'(1) = -1$$

3. Please find a general solution for the following differential equations.

$$\frac{d^3y}{dx^3} + 3\frac{d^2y}{dx^2} = e^x$$
(B) 5%
$$x^3\frac{d^3y}{dx^3} + x^2\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + 2y = x^{-2}$$

. 4. Please solve the following initial value problem. 10%

$$\frac{dy_1}{dx} = -y_1 + 4y_2 + 6e^x - x + 11$$

$$\frac{dy_2}{dx} = 3y - 2y_2 - 6e^x + 3x - 6$$

$$y_1(0) = 4, y_2(0) = 0$$

5. Please find f(x) if its Laplace transform is equal to the following.

(A) 5%
$$\frac{s^2 - 6s + 4}{s^3 - 3s^2 + 2s}$$
(B) 5%
$$\frac{6s^2 - 26s + 26}{s^3 - 6s^2 + 11s - 6}$$

- 6. Given a matrix equation Ax = b where A is a mxn coefficient matrix, x is a vector of n dimension, and b is a vector of m dimension. Please explain under what condition(s), the matrix system is called (1) overdetermined, (2) determined, and (3) underdetermined. 5%
- 7. Please use Gauss-Jordan elimination to determine the inverse of the following matrix. 5%

- 8. Give $f = \exp(x^2-y^2)\sin(2xy)$, please determine (1) the gradient of f (i.e., $F = \nabla f$), (2) the divergent of F, and (3) the curl of F. 5%
- 9. Please state the Divergence theorem of Gauss. 5%
- 10. Please evaluate the following integral. 10%

$$\oint_C \frac{e^{-3\pi z}}{2z+i} dz$$
, C: the boundary of the triangle with vertices -1,1, and -i

Please evaluate the following real integral. 10%

$$\int \frac{\cos(4x)}{x^4 + 5x^2 + 4} dx$$

12. Please use the Fourier integral representation to show that 10%

$$\int_{0}^{\infty} \frac{\cos(xw) + w\sin(xw)}{1 + w^{2}} dw = 0, \text{ if } x < 0$$

$$\frac{\pi}{2}$$
, if $x = 0$

$$\pi e^{-x}$$
, if $x > 0$