國立清華大學命題紙 # 八十五學年度 原 子 科 磐 系 (所) 伊 組碩士班研究生入學考試 科目 **銀 A 袋 學** 科號 4004 共 1 頁第 / 頁 *讀在試卷【答案卷】內作答 You can use either CGS units or MKS units to answer the following questions. ### Problem 1. (30%) For an arbitrary shape conductor with an arbitrary shape empty cavity inside the conductor. If we put charge Q into this conductor, please prove in detail that the electric field inside the conductor is zero and the electric field inside the cavity is zero, too. #### Problem 2. (10%) - i) In the electrostatics $\nabla \times \hat{E} = 0$ is due to what properties of the \vec{r} dependent of the Coulomb's low? (5%) - ii) In the electrostatics $\nabla \cdot \vec{E} = 0$ is due to what properties of the \vec{r} dependent of the Coulomb's low? (5%) ## Problem 3. (20%) Given an infinite surface charge with the surface charge density σ , please find the electric field $\vec{E}(\vec{r})$ by the following two methods. - i) Coulomb's law (15%) - ii) Gauss' law (5%) # Problem 4. (20%) Please prove the following boundary conditions, - i) Normal component of \vec{B} is continuous. - ii) Tangential component of \vec{H} is continuous. (for the case of $\vec{J}=0$) # Problem 5. (20%) In the free space, using the plane wave solutions \bar{E} and \bar{H} as well as the field energy density U, wave vector \bar{k} and the group velocity c to prove that the poynting vector \bar{S} is the energy flux vector.