國立清華大學命題紙

八十五學年度 原 子 科 磐 系 (所) 伊 組碩士班研究生入學考試 科目 **銀 A 袋 學** 科號 4004 共 1 頁第 / 頁 *讀在試卷【答案卷】內作答

You can use either CGS units or MKS units to answer the following questions.

Problem 1. (30%)

For an arbitrary shape conductor with an arbitrary shape empty cavity inside the conductor. If we put charge Q into this conductor, please prove in detail that the electric field inside the conductor is zero and the electric field inside the cavity is zero, too.

Problem 2. (10%)

- i) In the electrostatics $\nabla \times \hat{E} = 0$ is due to what properties of the \vec{r} dependent of the Coulomb's low? (5%)
- ii) In the electrostatics $\nabla \cdot \vec{E} = 0$ is due to what properties of the \vec{r} dependent of the Coulomb's low? (5%)

Problem 3. (20%)

Given an infinite surface charge with the surface charge density σ , please find the electric field $\vec{E}(\vec{r})$ by the following two methods.

- i) Coulomb's law (15%)
- ii) Gauss' law (5%)

Problem 4. (20%)

Please prove the following boundary conditions,

- i) Normal component of \vec{B} is continuous.
- ii) Tangential component of \vec{H} is continuous. (for the case of $\vec{J}=0$)

Problem 5. (20%)

In the free space, using the plane wave solutions \bar{E} and \bar{H} as well as the field energy density U, wave vector \bar{k} and the group velocity c to prove that the poynting vector \bar{S} is the energy flux vector.