國立清華大學命題紙

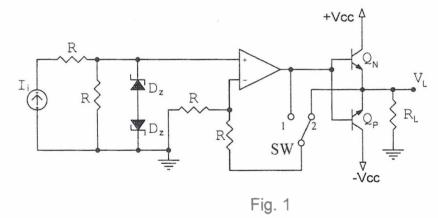
科目______ 至 學 _____科目代碼 ____ 9904 ____ 共 __3 __頁第 __1 __頁 *請在試卷 【答案卷】 內作答

1. (25%) Please mark 1A(a), 1A(b), ..., 1A(e), 1B(a), and 1B(b), respectively, in top of your answers.

(1A) In a typical driver circuit as shown in Fig. 1, the zener diodes D_z are ideal with zener voltage $V_z = 5.3$ V and forward cut-in voltage $V_{\gamma} = 0.7$ V. The operational amplifier is ideal too. The BJTs, Q_N and Q_P , can be modeled by $|V_{BE(on)}| = 0.7$ V. The power supply is $V_{CC} = 15$ V. The resistors are $R = 1 \ k\Omega$ and $R_L = 10 \ \Omega$. The switch SW can be selected either in position 1 or position 2. A current signal I_i with average I_{av} and peak-to-peak I_{pp} is applied to the input.

(a) When SW is at position 2, find the small signal gain V_1/I_i . (3%)

(Case 1) When I_i is a saw-tooth waveform with $I_{av} = 0$ and $I_{pp} = 10$ mA,


(b) plot the waveform of V_L for SW being at position 1. (3%)

(c) plot the waveform of V_L for SW being at position 2. (3%)

(Case 2) When I_i is a saw-tooth waveform with $I_{av} = 0$ and $I_{pp} = 20$ mA,

- (d) plot the waveform of V_L for SW being at position 1. (3%)
- (e) plot the waveform of V_L for SW being at position 2. (3%)

Note: Be sure to properly indicate the voltage values in your plots.

(1B) A Si-BJT with β = 100 and $r_o = \infty$ is used to make a common emitter amplifier biased by a constant current source as shown in Fig. 2. The capacitance C is very large.

(a) Sketch the small signal equivalent circuit for this amplifier using hybrid- π -model. (4%)

(b) If a voltage gain of $V_o/V_i = -200$ is desired, find the value of I_Q and the input resistance R_{in} .

(6%)

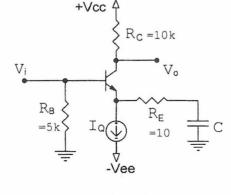
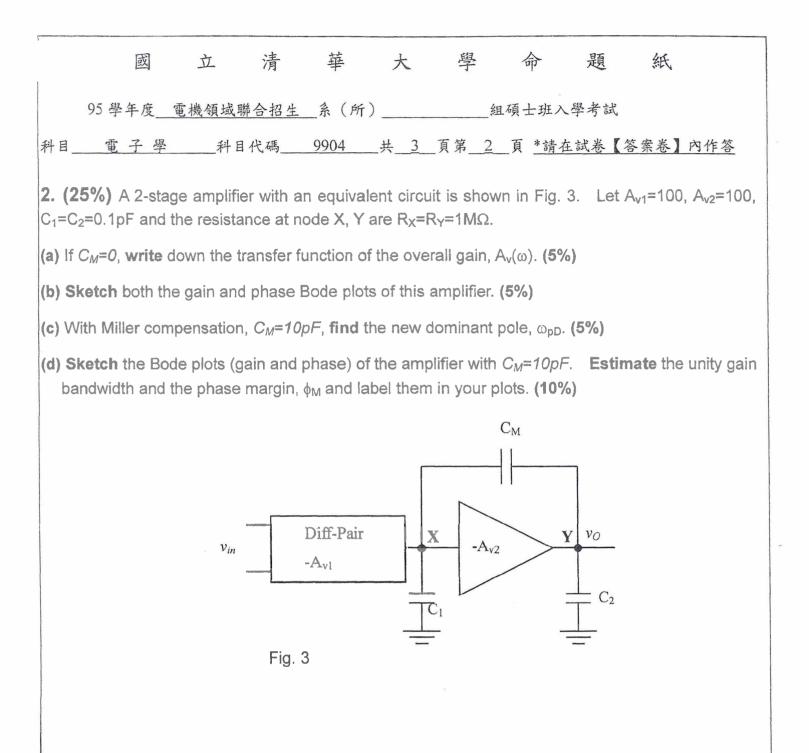
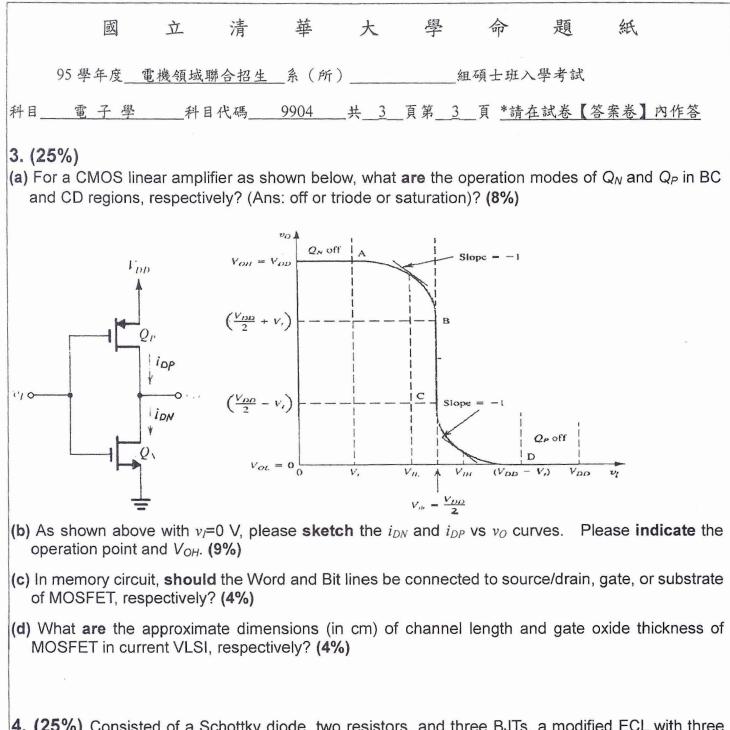




Fig. 2

- **4.** (25%) Consisted of a Schottky diode, two resistors, and three BJTs, a modified ECL with three inputs *A*, *B*, *V*_R and an output *C* is described as follows. Two primary inputs *A*, *B* and a reference voltage *V*_R are connected to the bases of BJT Q2, Q1, and Q3, respectively; All the emitters of BJT Q1, Q2, and Q3 are connected to node *E*, and the first resistor R_E are wired between node E and ground; Both the collectors of BJT Q1 and Q2 are wired to power supply *Vcc*, while the collector of BJT Q3 is the output *C*. The Schottky diode and the second resistor R_c are wired in parallel between power supply *Vcc* and output *C*.
- (a) Please draw this modified ECL circuit. (10%)
- (b) Write the output function C in terms of inputs A and B with brief explanation. (6%)
- (c) Find voltages of V_R , logic-0 and logic-1 in terms of Vcc and $V\gamma$, where $V\gamma$ is the turn-on voltage of the Schottky diode. (9%)