國 立 清 華 大 學 命 題 紙

95 學年度 \qquad電機領域聯合招生系（所） \qquad組碩士班入學考試科目 \qquad工程数學 A科目代碼＿9902 共 \qquad頁第 \qquad 1頁＊請在【答案卷卡】内作答

For problems $1 \sim 5$ ，both correct answers and detailed works are required．
1．(5%) Find the sine half－range expansion of $f(x)$

$$
f(x)=\left\{\begin{array}{lll}
\frac{2 k}{L} x & 0<x<\frac{L}{2} \\
\frac{2 k}{L}(L-x) & \frac{L}{2}<x<L
\end{array}\right.
$$

（A）$\frac{4 k}{\pi^{2}}\left(\frac{1}{1^{2}} \sin \frac{\pi}{L} x+\frac{1}{3^{2}} \sin \frac{3 \pi}{L} x+\frac{1}{5^{2}} \sin \frac{5 \pi}{L} x+\ldots\right)$
（B）$\frac{4 k}{\pi^{2}}\left(\frac{1}{1^{2}} \sin \frac{\pi}{L} x-\frac{1}{2^{2}} \sin \frac{2 \pi}{L} x+\frac{1}{3^{2}} \sin \frac{3 \pi}{L} x-\ldots\right)$
（C）$\frac{8 k}{\pi^{2}}\left(\frac{1}{1^{2}} \sin \frac{\pi}{L} x-\frac{1}{3^{2}} \sin \frac{3 \pi}{L} x+\frac{1}{5^{2}} \sin \frac{5 \pi}{L} x-\ldots\right)$
（D）$\frac{8 k}{\pi^{2}}\left(\frac{1}{1^{2}} \sin \frac{\pi}{L} x+\frac{1}{2^{2}} \sin \frac{2 \pi}{L} x+\frac{1}{3^{2}} \sin \frac{3 \pi}{L} x+\ldots\right)$
（E）$\frac{4 k}{\pi^{2}}\left(\frac{1}{1^{2}} \sin \frac{\pi}{L} x-\frac{1}{3^{2}} \sin \frac{2 \pi}{L} x+\frac{1}{5^{2}} \sin \frac{3 \pi}{L} x-\ldots\right)$
（F）$\frac{6 k}{\pi^{2}}\left(\frac{1}{1^{2}} \sin \frac{\pi}{L} x-\frac{1}{3^{2}} \sin \frac{2 \pi}{L} x+\frac{1}{5^{2}} \sin \frac{3 \pi}{L} x-\ldots\right)$
（G）$\frac{2 k}{\pi^{2}}\left(\frac{1}{1^{2}} \sin \frac{\pi}{L} x-\frac{1}{3^{2}} \sin \frac{2 \pi}{L} x+\frac{1}{5^{2}} \sin \frac{3 \pi}{L} x-\ldots\right)$
(H) none of the above

2．（ 5% ）Find the Fourier transform of $f(x)$

$$
f(x)=e^{-|x+3|}-2 e^{-|x|}
$$

（A）$\frac{1}{\sqrt{2 \pi}(w+1)}\left(e^{-i 3 w}-2\right)$（B）$\frac{2}{\sqrt{2 \pi}(w+1)}\left(e^{i 3 w}-2\right)$（C）$\frac{2}{\sqrt{2 \pi}\left(w^{2}+1\right)}\left(e^{-i 3 w}-2\right)$
（D）$\frac{2}{\sqrt{2 \pi}\left(w^{2}+1\right)}\left(e^{i 3 w}-2\right)(\mathrm{E}) \frac{1}{\sqrt{2 \pi}\left(w^{2}-1\right)}\left(e^{i 3 w}-2\right)(\mathrm{F}) \frac{1}{\sqrt{2 \pi}\left(w^{2}+1\right)}\left(e^{i 3 w}-2\right)$
（G）$\frac{1}{\sqrt{2 \pi}\left(w^{2}-1\right)}\left(e^{-i 2 w}-3\right)(H)$ none of the above

國 立 清 華 大 學 命 題 紙
95 學年度 \qquad電機領域聯合招生系（所） \qquad組碩士班入學考試科目 \qquad科目代碼 9902 共 \qquad 5頁第 \qquad頁＊請在【答案卷卡】内作答

3．（ 5% ）Find the inverse Laplace transform of

$$
F(s)=\frac{1}{s\left(s^{2}+\omega^{2}\right)}
$$

（A）$\frac{1}{w^{2}}(1-\sin w t)$（B）$\frac{1}{w^{2}}(1+\cos w t)$（C）$\frac{1}{w^{2}}(1-\cos w t)$（D）$\frac{1}{w}(1-\sin w t)$
（E）$\frac{1}{w}(1+\cos w t)(\mathrm{F}) \frac{1}{w}(1+\tan w t)(\mathrm{G}) \frac{1}{w}(1-\tan w t)(\mathrm{H})$ none of the above

4．(10%) Use Laplace transform to solve

$$
x y^{\prime \prime}+(1-x) y^{\prime}+k y=0
$$

（A）$y=\frac{e^{t}}{k!} \frac{d^{k}}{d t^{k}}\left[t^{-k} e^{-t}\right]$
（B）$y=\frac{e^{t}}{k} \frac{d^{k}}{d t^{k}}\left[t^{k} e^{t}\right]$
（C）$y=\frac{e^{t}}{k} \frac{d^{k}}{d t^{k}}\left[t^{k} e^{-t}\right]$
（D）$y=\frac{e^{t}}{k!} \frac{d^{k}}{d t^{k}}\left[t^{k} e^{-t}\right]$
（E）$y=\frac{e^{-t}}{k!} \frac{d^{k}}{d t^{k}}\left[t^{k} e^{-t}\right]$
（F）$y=\frac{e^{-t}}{k} \frac{d^{k}}{d t^{k}}\left[t^{k} e^{-t}\right]$
（G）$y=\frac{e^{k}}{t!} \frac{d^{k}}{d t^{k}}\left[t^{k} e^{-t}\right]$
（H）none of the above

5．（ 10% ）Use Method of Frobenius to solve the general solution of

$$
y^{\prime \prime}+\frac{1}{2 x} y^{\prime}+\frac{1}{4 x} y=0
$$

（A）$y=c_{1} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{n}+c_{2} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{n-\frac{1}{2}}$（B）$y=c_{1} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n-1)!} x^{n}+c_{2} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{n+\frac{1}{2}}$
（C）$y=c_{1} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{n}+c_{2} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{n+\frac{1}{2}}$（D）$y=c_{1} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{n}+c_{2} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{n+\frac{1}{2}}$
（E）$y=c_{1} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{n}+c_{2} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n-1)!} x^{n-\frac{1}{2}}$（F）$y=c_{1} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n)!} x^{n}+c_{2} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n-1)!} x^{n-\frac{1}{2}}$
（G）$y=c_{1} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n)!} x^{n}+c_{2} \sum_{n=0}^{\infty} \frac{}{(2 n-1)!} x^{n+\frac{1}{2}}$（H）none of the above
（ c_{1} and c_{2} are arbitrary constants）

國 立 清 華 大 學 命 題 紙
95 學年度 \qquad電機領域聯合招生系（所） \qquad組碩士班入學考試科目 \qquad工程數學 A科目代碼 9902 共 \qquad頁第 \qquad頁 請在【答案卷卡】内作答

6．（a）（3\％）The R－L－C network as shown has a sinusoidal input $v_{i}(t)=\sin \left(\omega_{0} t\right)$ ，and the output voltage across the capacitor is described by the differential equation：

$$
\frac{d^{2} v_{o}(t)}{d t^{2}}+30 \frac{d v_{o}(t)}{d t}+22500 v_{o}(t)=v_{i}(t)
$$

where the coefficients are determined by the value of each passive component．

You are required to calculate the input frequency ω_{0} that will cause the output $v_{0}(t)$ to have an exact 90° phase delay with respect to the input $v_{i}(t)$ ，as the output reaches its steady state（namely，the particular solution of the differential equation）．
（b）（4\％）By using the differential operator $D^{n}=\frac{d^{n}}{d x^{n}}$ ，the differential equation

$$
\frac{d^{6} y}{d x^{6}}+2 \frac{d^{5} y}{d x^{5}}+9 \frac{d^{4} y}{d x^{4}}-2 \frac{d^{3} y}{d x^{3}}-10 \frac{d^{2} y}{d x^{2}}=\sin (3 x)+3 x^{2}+x e^{-x}
$$

is re－written as

$$
\left(D^{2}+2 D+10\right)\left(D^{4}-D^{2}\right) y=\sin (3 x)+3 x^{2}+x e^{-x}
$$

Please determine the correct representation of the particular solution y_{p} for solving，and you do not have to solve the coefficients in it．

7．(5%) Solve the differential equation $\cos x \cdot d x+(\sin x+\cos y-\sin y) \cdot d y=0$ ．

8．(8%) Solve the differential equation $x^{3} \frac{d^{2} y}{d x^{2}}+x^{2} \frac{d y}{d x}-9 x y=1 \quad(x>0)$ ．

95學年度 \qquad電機領域聯合招生系（所） \qquad組碩士班入學考試科目 \qquad工程數學 A科目代碼 9902 共 5頁第 \qquad頁＊請在【答案卷卡】内作答

9．（ 10% ）Evaluate the integral $\oint_{0} e^{\frac{1}{z^{2}}} d z$ where $C:|z|=4$ counterclockwise．

10．（ 10% ）Find the eigenvalues and corresponding normalized eigenvectors（norm equals to 1 ）for the matrix $\left[\begin{array}{lll}1 & 4 & 0 \\ 0 & 2 & 0 \\ 4 & 2 & 5\end{array}\right]$ ．

11．The position \bar{r} of a particle of mass $m=1$ at time t is described as（all physical quantities are in SI units）：
C：$\vec{r}(t)=\frac{t^{2}}{\sqrt{2}} \vec{i}+(t+1) \vec{j}+\frac{t^{3}}{3} \vec{k}, t=[0,1]$.
（a）（4\％）Let V and W denote the average speed（a scalar）and work done to move the particle from $t=0$ to $t=1$ ，respectively．Choose the correct answer of（ V, W ）from the following：
（a）$(1,2)$ ；
（b）$(2,1) ;$（c）$\left(\frac{1}{3}, \frac{1}{2}\right)$ ；
（d）$\left(\frac{1}{2}, \frac{2}{3}\right)$ ；
（e）$\left(\frac{3}{2}, \frac{4}{3}\right)$ ；
（f）$\left(\frac{4}{5}, \frac{3}{2}\right)$ ；
（g）$(1,1)$ ；
（h）$\left(1, \frac{1}{2}\right) ;$（i） $\left(\frac{4}{3}, \frac{5}{2}\right) ;(\mathrm{j})\left(\frac{1}{2}, \frac{1}{3}\right) ;(\mathrm{k})\left(\frac{4}{3}, \frac{3}{2}\right) ;(l)$ none of the above．
（b）(3%) If there exists an electric field $\vec{E}(x, y, z)=y \cdot \cos (z) \vec{i}+x \cdot \cos (z) \vec{j}-x y \cdot \sin (z) \vec{k}$ ．What is the work W_{E} done by the field \vec{E} to move the particle of charge $q=\sqrt{2}$ along the specified path C ： $\vec{r}(t), t=[0,1]$ ？
（a） $\sin (2) ;(b) 1$ ；
（c） $\sin \left(\frac{1}{3}\right)$ ；
（d） $2 \sin \left(\frac{2}{3}\right)$ ；
（e）$\sqrt{2} \cos \left(\frac{1}{3}\right)$ ；
（f）$\sqrt{2} \sin \left(\frac{2}{3}\right) ;$
（g）$\sqrt{2}$ ；
（h）$\frac{\sqrt{3}}{2}$ ；
（i）$\frac{2}{3} \cos \left(\frac{2}{3}\right) ;$（j）$\frac{1}{2} \cos \left(\frac{1}{3}\right) ;(\mathrm{k}) 2 \cos \left(\frac{1}{3}\right) ;(l)$ none of the above．

國 立 清 華 大 學 命 題 紙
95 學年度 \qquad電機領域聯合招生系（所） \qquad組碩士班入學考試
\qquad科目代碼 9902 共 \qquad頁第 \qquad頁
＊請在【答案卷卡】内作答

12．The motion of a string is governed by the partial differential equation（PDE）：$u_{t t}=c^{2} u_{x x}$ ；where $u(x, t)$ is the displacement of the particle at position x and time t, c is a real constant，the subscripts $t t, x x$ denote $\partial^{2} / \partial t^{2}, \partial^{2} / \partial x^{2}$ ，respectively．
（a）(5%) The following figure shows a section of the string at some instant $t=t_{0}$ ，please roughly sketch the force vectors imposing on the illustrated string section．

（b）(8%) Let the string has a finite length $L(0 \leq x \leq L)$ ，and the two ends slide vertically without friction， i．e．boundary conditions (BCs) are：$u_{x}(0, t)=u_{x}(L, t)=0$ ，where the subscript x denotes $\partial / \partial x$ ．One can derive discrete modes $u_{n}(x, t)=X_{n}(x) \cdot T_{n}(t)$（functions satisfying the PDE and BCs）by using the method of separation of variables．Please sketch the spatial profile $X_{n}(x)$ for the lowest three （nontrivial）modes．
（c）(5%) In the presence of initial conditions（ICs）：$u(x, 0)=f(x), u_{t}(x, 0)=g(x)$ ，one usually expands the solution in terms of the modes：$u(x, t)=\sum_{n}\left\{A_{n}\right\} u_{n}(x, t)$ ，where $\left\{A_{n}\right\}$ is（are）the coefficient（s）for mode $u_{n}(x, t)$ ，then substitutes ICs to retrieve $\left\{A_{n}\right\}$ ．Although the principle of superposition works for the PDE of this problem $\left(u_{l l}=c^{2} u_{x x}\right)$ ，it could fail in some other PDEs．Please specify those of the following PDEs for which superposition does NOT apply．
（a）$u_{t l}=p(x) \cdot u_{x x}$ ；
（b）$u_{t l}=p(x) \cdot u_{x x}+q(x, t)$ ；
（c）$u_{t t}=u_{x x}+u_{x t} ;$
（d）$u_{u l}=p^{2}(x) \cdot u_{x x}+u_{x t i}$
（e）$u_{t I}=u \cdot u_{t}+u_{x} ;(f)$ $u_{t}=\exp \left[u_{x}\right]+u_{t t} ;(\mathrm{g}) u_{t t x}=p(x, t) \cdot u_{x x t} ;$（h）$u_{t I}=\exp [p(x, t)] \cdot u_{x x}+u_{u}$.

