2. (5 %) Find the Fourier transform of f(x)

$$f(x) = e^{-|x+3|} - 2e^{-|x|}$$
(A) $\frac{1}{\sqrt{2\pi}(w+1)} \left(e^{-i3w} - 2 \right)$ (B) $\frac{2}{\sqrt{2\pi}(w+1)} \left(e^{i3w} - 2 \right)$ (C) $\frac{2}{\sqrt{2\pi}(w^2+1)} \left(e^{-i3w} - 2 \right)$ (D) $\frac{2}{\sqrt{2\pi}(w^2+1)} \left(e^{i3w} - 2 \right)$ (E) $\frac{1}{\sqrt{2\pi}(w^2-1)} \left(e^{i3w} - 2 \right)$ (F) $\frac{1}{\sqrt{2\pi}(w^2+1)} \left(e^{i3w} - 2 \right)$ (G) $\frac{1}{\sqrt{2\pi}(w^2-1)} \left(e^{-i2w} - 3 \right)$ (H) none of the above

	國	立,	清	華	大	學	命	題	紙
95學年度							上班入學才	告試	
科目	工程數學	A	科目代	碼9902	<u>+_5</u>	頁第2	_頁 *請;	在【答案》	卷卡】內作答

3. (5%) Find the inverse Laplace transform of

$$F(s) = \frac{1}{s(s^{2} + \omega^{2})}$$
(A) $\frac{1}{w^{2}}(1 - \sin wt)$ (B) $\frac{1}{w^{2}}(1 + \cos wt)$ (C) $\frac{1}{w^{2}}(1 - \cos wt)$ (D) $\frac{1}{w}(1 - \sin wt)$
(E) $\frac{1}{w}(1 + \cos wt)$ (F) $\frac{1}{w}(1 + \tan wt)$ (G) $\frac{1}{w}(1 - \tan wt)$ (H) none of the above

4. (10 %) Use Laplace transform to solve

$$xy'' + (1 - x)y' + ky = 0$$
(A) $y = \frac{e^{t}}{k!} \frac{d^{k}}{dt^{k}} [t^{-k}e^{-t}]$ (B) $y = \frac{e^{t}}{k} \frac{d^{k}}{dt^{k}} [t^{k}e^{-t}]$ (C) $y = \frac{e^{t}}{k} \frac{d^{k}}{dt^{k}} [t^{k}e^{-t}]$ (D) $y = \frac{e^{t}}{k!} \frac{d^{k}}{dt^{k}} [t^{k}e^{-t}]$
(E) $y = \frac{e^{-t}}{k!} \frac{d^{k}}{dt^{k}} [t^{k}e^{-t}]$ (F) $y = \frac{e^{-t}}{k} \frac{d^{k}}{dt^{k}} [t^{k}e^{-t}]$ (G) $y = \frac{e^{k}}{t!} \frac{d^{k}}{dt^{k}} [t^{k}e^{-t}]$ (H) none of the above

5. (10 %) Use Method of Frobenius to solve the general solution of

$$y'' + \frac{1}{2x}y' + \frac{1}{4x}y = 0$$
(A) $y = c_1 \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^n + c_2 \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{n-\frac{1}{2}}$ (B) $y = c_1 \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n-1)!} x^n + c_2 \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{n+\frac{1}{2}}$
(C) $y = c_1 \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^n + c_2 \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{n+\frac{1}{2}}$ (D) $y = c_1 \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^n + c_2 \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{n+\frac{1}{2}}$
(E) $y = c_1 \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^n + c_2 \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n-1)!} x^{n-\frac{1}{2}}$ (F) $y = c_1 \sum_{n=0}^{\infty} \frac{(-1)^n}{(n)!} x^n + c_2 \sum_{n=0}^{\infty} \frac{(-1)^n}{(n-1)!} x^{n-\frac{1}{2}}$
(G) $y = c_1 \sum_{n=0}^{\infty} \frac{(-1)^n}{(n)!} x^n + c_2 \sum_{n=0}^{\infty} \frac{(2n-1)!}{(2n-1)!} x^{n+\frac{1}{2}}$ (H) none of the above
(c, and c, are arbitrary constants)

6. (a) (3%)The R-L-C network as shown has a sinusoidal input $v_i(t) = \sin(\omega_0 t)$, and the output voltage across the capacitor is described by the differential equation:

$$\frac{d^2 v_o(t)}{dt^2} + 30 \frac{d v_o(t)}{dt} + 22500 v_o(t) = v_i(t)$$

where the coefficients are determined by the value of each passive component.

You are required to calculate the input frequency ω_0 that will cause the output $\nu_0(t)$ to have an exact 90° phase delay with respect to the input $\nu_i(t)$, as the output reaches its steady state (namely, the particular solution of the differential equation).

(b)(4%) By using the differential operator $D^n = \frac{d^n}{dx^n}$, the differential equation

$$\frac{d^{6}y}{dx^{6}} + 2\frac{d^{5}y}{dx^{5}} + 9\frac{d^{4}y}{dx^{4}} - 2\frac{d^{3}y}{dx^{3}} - 10\frac{d^{2}y}{dx^{2}} = \sin(3x) + 3x^{2} + xe^{-x}$$

is re-written as

$$(D^{2} + 2D + 10)(D^{4} - D^{2})y = sin(3x) + 3x^{2} + xe^{-x}$$

Please determine the correct representation of the particular solution y_p for solving, and you do not have to solve the coefficients in it.

7. (5%) Solve the differential equation $\cos x \cdot dx + (\sin x + \cos y - \sin y) \cdot dy = 0$.

8. (8%) Solve the differential equation $x^3 \frac{d^2 y}{dx^2} + x^2 \frac{dy}{dx} - 9xy = 1$ (x > 0).

命 華 大 學 題 紙 清 立 國 組碩士班入學考試 電機領域聯合招生__系(所)_ 95 學年度 科目代碼_9902 共_5 頁第 4 頁 *請在【答案卷卡】內作答 科目 9. (10%) Evaluate the integral $\oint e^{\frac{1}{z^2}} dz$ where C:|z|=4 counterclockwise. 10. (10%) Find the eigenvalues and corresponding normalized eigenvectors (norm equals to 1) for the 11. The position \bar{r} of a particle of mass m=1 at time t is described as (all physical quantities are in SI units): C: $\vec{r}(t) = \frac{t^2}{\sqrt{2}}\vec{i} + (t+1)\vec{j} + \frac{t^3}{3}\vec{k}$, t = [0,1]. (a) (4%) Let V and W denote the average speed (a scalar) and work done to move the particle from t=0 to t=1, respectively. Choose the correct answer of (V,W) from the following: (a) (1,2); (b) (2,1); (c) $\left(\frac{1}{3}, \frac{1}{2}\right)$; (d) $\left(\frac{1}{2}, \frac{2}{3}\right)$; (e) $\left(\frac{3}{2}, \frac{4}{3}\right)$; (f) $\left(\frac{4}{5}, \frac{3}{2}\right)$; (g) (1,1); (h) $\left(1, \frac{1}{2}\right)$; (i) $\left(\frac{4}{3},\frac{5}{2}\right)$; (j) $\left(\frac{1}{2},\frac{1}{3}\right)$; (k) $\left(\frac{4}{3},\frac{3}{2}\right)$; (l) none of the above. (b) (3%) If there exists an electric field $\vec{E}(x, y, z) = y \cdot \cos(z)\vec{i} + x \cdot \cos(z)\vec{j} - xy \cdot \sin(z)\vec{k}$. What is the work W_E done by the field \overline{E} to move the particle of charge $q=\sqrt{2}$ along the specified path C: $\bar{r}(t), t=[0,1]?$ (a) $\sin(2)$; (b) 1; (c) $\sin\left(\frac{1}{3}\right)$; (d) $2\sin\left(\frac{2}{3}\right)$; (e) $\sqrt{2}\cos\left(\frac{1}{3}\right)$; (f) $\sqrt{2}\sin\left(\frac{2}{3}\right)$; (g) $\sqrt{2}$; (h) $\frac{\sqrt{3}}{2}$; (i) $\frac{2}{3}\cos\left(\frac{2}{3}\right)$; (j) $\frac{1}{2}\cos\left(\frac{1}{3}\right)$; (k) $2\cos\left(\frac{1}{3}\right)$; (l) none of the above.

	國	立	清	華	大	學	命	題	紙	
95 學年度							专士班入粤	是考試		
科目_	工程數	學A	科目(七碼_99	<u>02_</u> 共_ <u>5</u>	頁第	5頁 *詩	青在【答	案卷卡】內作	答

- 12. The motion of a string is governed by the partial differential equation (PDE): $u_{tt}=c^2 u_{xx}$; where u(x,t) is the displacement of the particle at position x and time t, c is a real constant, the subscripts tt, xx denote $\partial^2/\partial t^2$, $\partial^2/\partial x^2$, respectively.
- (a) (5%) The following figure shows a section of the string at some instant $t=t_0$, please roughly sketch the force vectors imposing on the illustrated string section.

(b) (8%) Let the string has a finite length L (0≤x≤L), and the two ends slide vertically without friction, i.e. boundary conditions (BCs) are: u_x(0,t)=u_x(L,t)=0, where the subscript x denotes ∂/∂x. One can derive discrete modes u_n(x,t)=X_n(x)·T_n(t) (functions satisfying the PDE and BCs) by using the method of separation of variables. Please sketch the spatial profile X_n(x) for the lowest three (nontrivial) modes.

(c) (5%) In the presence of initial conditions (ICs): u(x,0)=f(x), $u_t(x,0)=g(x)$, one usually expands the solution in terms of the modes: $u(x,t)=\sum_n \{A_n\}u_n(x,t)$, where $\{A_n\}$ is(are) the coefficient(s) for

mode $u_n(x,t)$, then substitutes ICs to retrieve $\{A_n\}$. Although the principle of superposition works for the PDE of this problem $(u_{tt}=c^2u_{xx})$, it could fail in some other PDEs. Please specify those of the following PDEs for which superposition does NOT apply.

(a) $u_{tt}=p(x)\cdot u_{xx}$; (b) $u_{tt}=p(x)\cdot u_{xx}+q(x,t)$; (c) $u_{tt}=u_{xx}+u_{xt}$; (d) $u_{tt}=p^{2}(x)\cdot u_{xx}+u_{xt}$; (e) $u_{tt}=u\cdot u_{t}+u_{x}$; (f) $u_{t}=\exp[u_{x}]+u_{tt}$; (g) $u_{ttx}=p(x,t)\cdot u_{xxt}$; (h) $u_{tt}=\exp[p(x,t)]\cdot u_{xx}+u$.