台灣聯合大學系統 104 學年度碩士班招生考試試題 共 ____ 頁 第 ___ 頁

類組: <u>電機類</u> 科目: <u>工程數學 C(3005)</u>

※請在答案卡內作答

- 本測驗試題為多選題,請選出所有正確的答案,並請用2B鉛筆作答於答案卡。
- 共二十題,每題五分,每答對一個選項,可得一分,每答錯一個選項,倒扣一分,直到本科分數 扣完為止。未作答則該題不給分也不扣分。

Notation: In the following questions, boldface lowercase letters such as x, v, etc. denote column vectors of proper length; boldface uppercase letters such as A, B, etc. denote matrices of proper size; A^T means the transpose of matrix A. C(A) is the column space of matrix A, and N(A) is the null space of matrix A. \mathbb{R} is the usual set of all real numbers.

- Forward elimination uses possible elementary row operations to do elimination on a matrix. Suppose a block

lower triangular matrix $\mathbf{E} = \begin{bmatrix} \mathbf{H} & \mathbf{I} \\ \mathbf{J} & \mathbf{K} \end{bmatrix}$ can do elimination on a whole block column of matrix

$$\mathbf{A} = \begin{bmatrix} \mathbf{M} & \mathbf{N} \\ \mathbf{P} & \mathbf{Q} \end{bmatrix}$$
 to produce an upper triangular matrix $\mathbf{U} = \begin{bmatrix} \mathbf{Q} & \mathbf{R} \\ \mathbf{S} & \mathbf{T} \end{bmatrix}$. If \mathbf{H} and \mathbf{K} are identity matrices, and \mathbf{A}

has independent columns, which of the following statements are true?

- (A) $A^T A$ is invertible.
- (B) $T = Q PM^{-1}N$.
- (C) $J = PM^{-1}$.
- (D) Q = M; R = -N.
- (E) E is invertible.
- \vec{z} Given three vectors, $\mathbf{v}_1 = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}^T$, $\mathbf{v}_2 = \begin{bmatrix} 6 & 7 & 8 & 9 & 10 \end{bmatrix}^T$, and $\mathbf{v}_3 = \begin{bmatrix} 2 & -3 & 0 & 1 & 0 \end{bmatrix}^T$, which of the following statements are true?
 - (A) The set of all linear combinations of \mathbf{v}_1 , \mathbf{v}_2 and \mathbf{v}_3 is isomorphic to \mathbb{R}^3 .
 - (B) If S is a subspace spanned by \mathbf{v}_1 and \mathbf{v}_2 , \mathbf{v}_3 can be a vector in one of the bases for S¹, which is perpendicular to S.
 - (C) If $A = [v_1 \ v_2]$, the rank of A is 3.
 - (D) If $A = [v_1 \quad v_2 \quad v_3]$, the dimension of N(A) is 2.
 - (E) If $A = [v_1 \quad v_2 \quad v_3]$, the column vectors of A^T are linearly independent.

類組:<u>電機類</u> 科目:<u>工程數學 C(3005)</u>

※請在答案卡內作答

 \equiv S_1 is the subspace generated by $\mathbf{v}_1 = \begin{bmatrix} 1 & -1 & 1 \end{bmatrix}^T$, and S_2 is the subspace generated by

 $\mathbf{v}_2 = \begin{bmatrix} 1 & 0 & -1 & 0 \end{bmatrix}^T$. If $\mathbf{A} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix}$, which of the following is within the subspace generated by \mathbf{v}_1 and \mathbf{v}_2 ?

- (A) $S_1 \cap S_2$.
- (B) $S_1 \cup S_2$.
- (C) C(A).
- (D) $\begin{bmatrix} 4 & -4 & 3 & 4 \end{bmatrix}^T + c_1 * \begin{bmatrix} 1 & -1 & 1 & 1 \end{bmatrix}^T + c_2 * \begin{bmatrix} 1 & 0 & -1 & 0 \end{bmatrix}^T$, where c_1 and c_2 are arbitrary real numbers.
- (E) $\begin{bmatrix} x_1 & x_2 & x_3 & x_4 \end{bmatrix}^T$, where $\sum_{i=1}^4 x_i = 0$.
- 四、Given a subspace W: $a\mathbf{x} + b\mathbf{y} + c\mathbf{z} + d\mathbf{u} = 0$, $\{a, b, c, d \in \mathbb{R}^1\}$; If the orthogonal projection matrix onto the

W is P, which of the following statements are always true?

- (A) $P^T=P$.
- (B) $P=P^{-1}$.
- (C) The column vectors of \mathbf{P}^T are orthogonal to each other.
- (D) $P^2=P$.
- (E) P^TP is invertible.
- $\mathcal{E} \cdot \mathbf{A}$ is an m by n matrix and $\mathbf{Q} = [\mathbf{q}_1 \quad \cdots \quad \mathbf{q}_n]$, suppose \mathbf{Q} has orthonormal columns, i.e. \mathbf{q}_i ($i=1 \sim n$) are orthonormal vectors, and $\mathbf{A} = \mathbf{Q}\mathbf{R}$, which of the following statements are true?
 - (A) $\mathbf{Q}^{\mathrm{T}} = \mathbf{Q}^{-1}$.
 - (B) The orthogonal projection matrix onto $C(\mathbf{Q})$ is Identity Matrix.
 - (C) $\mathbf{q}_{i}^{\mathsf{T}}\mathbf{q}_{j} = 0 \text{ if } i \neq j.$
 - (D) $det(\mathbf{Q}^T\mathbf{Q})=1$.
 - (E) If m=n, det(A)=det(R).

台灣聯合大學系統 104 學年度碩士班招生考試試題 共_7_頁 第_3_頁

類組:<u>電機類</u> 科目:<u>工程數學 C(3005)</u>

※請在答案卡內作答

∴ For matrix $\mathbf{A} = \begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{bmatrix}$, which of the following statements are true for each basis and dimension of

four fundamental subspaces? Note the coefficients $a, b, c \in \mathbb{R}^1$.

- (A) Column space of matrix A: $C(A) = a \frac{\begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix}}{3}$, dimension C(A) = 1.
- (B) Null space of matrix A: $N(A) = b \frac{\begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix}}{3}$, dimension N(A) = 1.
- (C) Column space of matrix A^{T} : $C(A^{T}) = c \frac{1}{\sqrt{2}}$, dimension $C(A^{T}) = 1$.
- (D) Matrix A has 2 eigenvalues and eigenvectors.
- (E) Rank of matrix A is 2.
- 七、Which of the following statements are true?
 - (A) A real matrix with real eigenvalues and eigenvectors is symmetric.
 - (B) A real matrix with real eigenvalues and complete set of orthogonal eigenvectors is symmetric.
 - (C) The inverse of a symmetric matrix is symmetric.
 - (D) If the columns of a square matrix S are linearly independent, S is invertible.
 - (E) A matrix with complete set of independent eigenvectors is diagonalizable.
- $\ensuremath{\nearrow}$. Find the eigenvalues and eigenvectors of A^3 , where

$$\mathbf{A} = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}.$$

(A)
$$\lambda_1 = 1$$
, $\lambda_2 = 3$; $\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\mathbf{x}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

(B)
$$\lambda_1 = -1$$
, $\lambda_2 = 3$; $\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\mathbf{x}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

(C)
$$\lambda_1 = 1, \lambda_2 = 9; \quad \mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \mathbf{x}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

(D)
$$\lambda_1 = 1$$
, $\lambda_2 = 27$; $\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\mathbf{x}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

(E)
$$\lambda_1 = 1$$
, $\lambda_2 = 1$; $\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\mathbf{x}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

類組:電機類 科目:工程數學 C(3005)

※請在答案卡內作答

h. The rabbit and wolf population shows fast growth of rabbits (from 6r) but loss to wolves (from -2w)

$$r' = 6r - 2w$$
$$w' = 2r + w$$

Which of the following statements are true?

- (A) The eigenvalues are $\lambda_1 = 5$, $\lambda_2 = 2$.
- (B) If r(0) = w(0) = 30, the population of rabbit at time t becomes: $20e^{5t} + 10e^{2t}$.
- (C) If r(0) = w(0) = 30, the population of wolf at time t becomes: $10e^{-2t} + 20e^{-5t}$.
- (D) After a long time, the ratio of wolves to rabbits approaches 2.
- (E) After a long time, the wolves will be extinct due to lack of food.

+ • For a real matrix $\mathbf{A} = \begin{bmatrix} 2 & -1 & b \\ -1 & 2 & -1 \\ b & -1 & 2 \end{bmatrix}$, which of the following statements are true?

- (A) A is positive definite if b = 3.
- (B) The eigenvalues in positive definite matrix must be positive.
- (C) A equals $\mathbf{R}^T \mathbf{R}$ for a matrix \mathbf{R} with independent columns if b = 0.
- (D) All 3 pivots in matrix A are positive if b = 0.
- (E) The determinant of A is always positive for all b.

 $+-\cdot$ Suppose that $y_1(x), \dots, y_n(x)$ are n-1 times differentiable functions over $(-\infty, \infty)$ and W(x)

denotes the Wronskian of $y_1(x), \dots, y_n(x)$ at x. Which of the following statements are true?

- (A) W(x) vanishes at every x if $y_1(x), \dots, y_n(x)$ are linearly dependent.
- (B) If $y_1(x), \dots, y_n(x)$ are linearly independent, then there is x such that $W(x) \neq 0$.
- (C) If $y_1(x), \dots, y_n(x)$ are linearly independent, then $W(x) \neq 0$ for all x.
- (D) If $y_1(x), \dots, y_n(x)$ are also solutions of an *n*th-order linear homogeneous ordinary differential equation with constant coefficients. Then either $W(x) \neq 0$ for all x or W(x) = 0 for all x.
- (E) None of the above statements are true.

類組:<u>電機類</u> 科目:<u>工程數學 C(3005)</u>

※請在答案卡內作答

- +=: Suppose that p(x), q(x), and f(x) are continuous functions over $(-\infty,\infty)$, and f(x) is not the zero function. Please determine which of the solution sets of the following differential equations are vector spaces?
 - (A) y''(x) + p(x)y'(x) + q(x)y(x) = f(x).
 - (B) y''(x) + p(x)y'(x) + q(x)y(x) = 0.
 - (C) y(x)y''(x) + y(x) = 0.
 - (D) $x^2y''(x) + 5xy'(x) + 12y(x) = 1$.
 - (E) $(y'(x))^3 = 1$.
- $+ \equiv \cdot$ Consider the differential equation y''(x) + ay'(x) + by(x) = 0. Which of the following statements are true?
 - (A) $y(x) \rightarrow 0$ no matter what y(0) and y'(0) if a > 0 and b > 0.
 - (B) y(x) is bounded no matter what y(0) and y'(0) if a > 0 and b = 0.
 - (C) y(x) is unbounded for all $(y(0), y'(0)) \neq (0,0)$ if $\min\{a,b\} < 0$.
 - (D) y(x) is always unbounded whenever $(y(0), y'(0)) \neq (0,0)$ if ab < 0.
 - (E) None of the above statements are true.
- 十四、 Which of the following statements are true?
 - (A) $x(t) = \int_0^t \tau e^{-\tau} f(t-\tau) d\tau$ is the solution of x''(t) + 2x'(t) + x(t) = f(t) and x(0) = x'(0) = 0.
 - (B) Let $\delta(x)$ be the impulse function. Then the following two initial value problems y''(x) + ay'(x) + by(x) = f(x), y(0) = 0 & y'(0) = v and $y''(x) + ay'(x) + by(x) = f(x) + v\delta(x)$, y(0) = 0 & y'(0) = 0 have the same solution for x > 0.
 - (C) If f(x) is a continuous function over $[0,\infty)$, then there always exists some complex number s such that the Laplace transform $\int_0^\infty e^{-sx} f(x) dx$ converges.
 - (D) Inverse Laplace transformation, provided it exists, is not a linear function.
 - (E) None of the above statements are true.
- + \pm . Consider the initial value problem: $y'(x) = x^2y(x)(1-y(x))^3$, y(0) = 0.5. Which of the following statements are true?
 - (A) The initial value problem may have infinite many solutions.
 - (B) The solution, if exists, always lies between 0 and 1.
 - (C) The given differentiable equation is separable.
 - (D) The given differentiable equation is exact.
 - (E) None of the above statements are true.

類組:<u>電機類</u> 科目:工程數學 C(3005)

※請在答案卡內作答

十六、 In the following choices of (A) to (E), please find the solutions to the given system of equations

$$\frac{d}{dt}\mathbf{x} = \begin{bmatrix} 1 & \sqrt{3} \\ \sqrt{3} & -1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} e' \\ \sqrt{3}e^{-t} \end{bmatrix}.$$

(A)
$$5 \begin{bmatrix} \sqrt{3} \\ 1 \end{bmatrix} e^{-2t} + \begin{bmatrix} 2/3 \\ 1/\sqrt{3} \end{bmatrix} e^{t} - \begin{bmatrix} -1 \\ 2/\sqrt{3} \end{bmatrix} e^{-t}$$
.

(B)
$$3\begin{bmatrix} 1 \\ -\sqrt{3} \end{bmatrix} e^{-2t} - \begin{bmatrix} 2/3 \\ 1/\sqrt{3} \end{bmatrix} e^{t} + \begin{bmatrix} -1 \\ 2/\sqrt{3} \end{bmatrix} e^{-t}$$
.

(C)
$$5 \begin{bmatrix} -\sqrt{3} \\ 1 \end{bmatrix} + 3 \begin{bmatrix} 1 \\ \sqrt{3} \end{bmatrix} e^{-2t} + \begin{bmatrix} 2/3 \\ -1/\sqrt{3} \end{bmatrix} e^{t} - \begin{bmatrix} 1 \\ 2/\sqrt{3} \end{bmatrix} e^{-t}$$
.

(D)
$$5\begin{bmatrix} -\sqrt{3} \\ 1 \end{bmatrix} e^{2t} + 3\begin{bmatrix} 1 \\ -\sqrt{3} \end{bmatrix} e^{-2t} - \begin{bmatrix} 2/3 \\ 1/\sqrt{3} \end{bmatrix} e^{t} + \begin{bmatrix} -1 \\ 2/\sqrt{3} \end{bmatrix} e^{-t}$$
.

(E)
$$5\begin{bmatrix} \sqrt{3} \\ 1 \end{bmatrix} e^{2t} + 3\begin{bmatrix} 1 \\ -\sqrt{3} \end{bmatrix} e^{-2t} - \begin{bmatrix} 2/3 \\ 1/\sqrt{3} \end{bmatrix} e^{t} + \begin{bmatrix} -1 \\ 2/\sqrt{3} \end{bmatrix} e^{-t}$$
.

++: We can derive the solution as a series of normalized eigenfunctions of the corresponding

homogeneous problem as follows:

$$y'' + \lambda y = 0$$
, $y(0) = 0$, $y(1) + y'(1) = 0$

where the solution can be expressed as

$$y = \sum_{n=1}^{\infty} \frac{Cf(x)\sin\sqrt{\lambda_n}}{\lambda_n(\lambda_n - 2)(1 + \cos^2\sqrt{\lambda_n})}.$$

Please find the corresponding term of Cf(x) from the following choices:

(A)
$$4(\sin\sqrt{\lambda_n}x + \cos\sqrt{\lambda_n}x)$$

(B)
$$4\sin\sqrt{\lambda_n}x + \cos\sqrt{\lambda_n}x$$

(C)
$$\sin\sqrt{\lambda_n}x + 4\cos\sqrt{\lambda_n}x$$

(D)
$$4\sin\sqrt{\lambda_n}x$$

(E)
$$2\cos\sqrt{\lambda_n}x$$

類組:<u>電機類</u> 科目:工程數學 C(3005)

※請在答案卡內作答

 $+ \wedge \cdot$ Continuing on the previous question, please find the value of the λ_n for $n \ge 4$.

(A)
$$\frac{(2n+1)^2 \pi^2}{4}$$

(B)
$$\frac{(n\pi)^2}{2}$$

(C)
$$\frac{(n\pi+1)^2}{2}$$

(D)
$$\frac{(2n-1)^2 \pi^2}{4}$$

(E)
$$\frac{(n\pi-1)^2}{4}$$

十九、 Find the inverse Laplace transform of the given functions:

$$L^{-1}\left\{\frac{2s+1}{4s^2+4s+5}\right\}$$

(A)
$$\frac{1}{4}e^{t/2}\sinh(t-2)$$

(B)
$$\frac{1}{2}e^{-t/2}\sin t$$

(C)
$$\frac{1}{2}e^{-t/2}\cos t$$

(D)
$$\frac{1}{4}e^{t/2}\cosh(t-2)$$

(E)
$$\frac{1}{4}e^{-t/2}\sinh t$$

=+ Assume that there is a Fourier series converging to the function f defined by

$$f(x) = \begin{cases} -x, & -2 \le x < 0, \\ x, & 0 \le x < 2; \end{cases} \text{ and } f(x+4) = f(x).$$

Please find the following choices, which are the terms in this Fourier series?

(A)
$$\frac{-8}{\pi^2} \frac{\cos(\frac{15}{2}\pi x)}{225}$$

(B)
$$\frac{1}{\pi^2} \frac{\sin(4\pi x)}{8}$$

(D)
$$\frac{8}{\pi^2} \frac{\cos(\frac{5}{2}\pi x)}{25}$$

$$(E) \quad \frac{1}{\pi^2} \frac{\sin(8\pi x)}{32}$$