科目 普通化學

共工頁 第一頁 *請在答案卡內作答

For the following multiple choice questions, there is only one correct or best answer. There are 2 points for each question.

- 1. Which of the following is not the correct chemical formula for the compound named?
 - $(A) Al(OH)_2$

aluminum hydroxide

(B) LiCN

lithium cyanide

 $(C) Fe_2O_3$

Iron(III) oxide

(D) ZnSe

zinc selenide

magnesium acetate (E) $Mg(C_2H_3O_2)_2$

- 2. Which is the correct formula for gold(I) sulfide?
 - (A) AuS (B) Au_2S (C) AuS_2

(D) Au_2S_3

(E) Au₂S₂

- (A) Cu(NH₃)₂

- (B) $Cu(NO_3)_2$ (C) CuO (D) $Cu(NH_3)_2^{2+}$
- (E) Cu(OH)₂

- (A) True; the oxygen is reduced and the hydrogen is oxidized.
- (B) True; the carbon is oxidized and the hydrogen is reduced.
- (C) True; the carbon is oxidized and the oxygen is reduced.
- (D) True; the carbon is reduced and the oxygen is oxidized.
- (E) False

- (A) 1:1
- (B) 1:2 (C) 2:1 (D) 1:4 (E) 4:1

- (A) A system that is disturbed from an equilibrium condition responds in such a way as to restore equilibrium.
- (B) A system moves spontaneously toward a state of equilibrium.
- (C) Equilibrium in molecular systems is dynamic, with two opposing processes balancing one another.
- (D) The value of the equilibrium constant for a given reaction mixture is the same regardless of the direction from which equilibrium is attained.
- (E) The equilibrium constant is independent of temperature.

7. For the reaction
$$2H_2(g) + O_2(g) \rightleftharpoons 2H_2O(g)$$
, what is the relationship between K and K_p at temperature T ?

- (A) $K = K_p$ (B) $K = K_p(RT)$ (C) $K_p = K(RT)$ (D) $K = K_p(RT)^2$ (E) $K_p = K(RT)^2$

注:背面有試題

科目 普通化學

類組別

共1_頁第2_頁 *請在答案卡內作答

- 8. When the substances in the equation below are at equilibrium at pressure P and temperature T, how can the equilibrium be shifted to favor the products? $CuO(s) + H_2(g) \iff Cu(s) + H_2O(g)$ Change in enthalpy = -2.0 kJ.
 - (A) Decrease the temperature.
 - (B) Increase the temperature.
 - (C) Add a catalyst.
 - (D) Increase the pressure by adding an inert gas such as nitrogen.
 - (E) Allow some gas to escape at constant pressure and temperature.
- 9. The acids HC₂H₃O₂ and HF are both weak, but HF is a stronger acid than HC₂H₃O₂. HCl is a strong acid. Order the following according to base strength.
 - $(A) C_2 H_3 O_2^- > F^- > Cl^- > H_2 O$
 - (B) $Cl^- > F^- > C_2H_3O_2^- > H_2O$
 - (C) $C_2H_3O_2^- > F^- > H_2O > Cl^-$
 - (D) $F^- > C_2H_3O_2^- > H_2O > Cl^-$
 - (E) none of these

- 10. HOAc $K_a = 1.8 \times 10^{-5}$ H_2CO_3 $K_{a1} = 4.3 \times 10^{-7}$, $K_{a2} = 5.6 \times 10^{-11}$ Which of the following 0.01 M solutions has the highest pH?
 - (A)HOAc
- (B) NaOAc
- (C) H₂CO₃
- (D) Na₂CO₃ (E) NaHCO₃
- 11. Determine the pH of the following aqueous solution. Choose your answer from the given pH ranges. 0.5 $M \text{ NH}_4\text{F} \text{ (p}K_b \text{ for NH}_3 = 4.74, p}K_a \text{ for HF} = 3.14)$
 - (A) pH 0.00-2.99

- (B) pH 3.00–5.99 (C) pH 6.00–8.99 (D) pH 9.00–10.99
- (E) pH 11.00-14.00
- 12. Which of the following solutions will be the best buffer at a pH of 9.26? (K_a for HC₂H₃O₂ is 1.8 × 10⁻⁵; K_b for NH₃ is 1.8×10^{-5} .)
 - (A) 0.20 M HC₂H₃O₂ and 0.20 M NaC₂H₃O₂
 - (B) 3.0 M HC₂H₃O₂ and 3.0 M NH₄Cl
 - (C) 3.0 MHC₂H₃O₂ and 3.0 MNH₃
 - (D) 0.20 M NH₃ and 0.20 M NH₄Cl
 - (E) $3.0 M NH_3$ and $3.0 M NH_4Cl$
- 13. A 100.0-mL sample of 0.2 M (CH₃)₃N ($K_b = 5.3 \times 10^{-5}$) is titrated with 0.2 M HCl. What is the pH at the equivalence point?
 - (A)7.0
- (B) 3.1 (C) 10.4 (D) 5.4 (E) 9.5
- 14. Which of the following compounds has the lowest solubility, in moles per liter, in water?
 - (A) CdS $K_{sp} = 1.0 \times 10^{-28}$ (B) Al(OH)₃ $K_{sp} = 2 \times 10^{-32}$
- (C) PbSO₄ $K_{sp} = 1.3 \times 10^{-8}$
- (D) Sn(OH)₂ $K_{sp} = 3 \times 10^{-27}$ (E) MgC₂O₄ $K_{sp} = 8.6 \times 10^{-5}$

科目 普通化學

類組別

15. Given the following values of equilibrium constants:

$$Cu(OH)_2(s) = Cu^{2+}(aq) + 2OH^{-}(aq) \quad K_{sp} = 1.6 \times 19^{-19}$$

$$Cu(NH_3)_4^{2+}(aq) \leftarrow Cu^{2+}(aq) + 4NH_3(aq) \quad K = 1.0 \times 10^{-13}$$

What is the value of the equilibrium constant for the following reaction? $Cu(OH)_2(s) + 4NH_3(aq)$ $Cu(NH_3)_4^{2+}(aq) + 2OH^-(aq)$

- $(A) 1.6 \times 10^{-19}$
- (B) 1.6×10^{-6}

- (C) 6.2×10^{31} (D) 1.6×10^{-32} (E) 1.0×10^{13}

16. Consider the following reaction: $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$ $\Delta H = -198 \text{ kJ}$ Calculate the energy change associated with 0.334 mole of SO₂ reacting with excess O₂.

- (A) -33.1 kJ

- (B) -66.1 kJ (C) -132 kJ (D) -198 kJ (E) -424 kJ

17. For the reaction $H_2O(l) \rightarrow H_2O(g)$ at 298 K, 1.0 atm, ΔH is more positive than ΔE by 2.5 kJ/mol. This quantity of energy can be considered to be

- (A) the heat flow required to maintain a constant temperature.
- (B) the value of ΔH itself.
- (C) the work done in pushing back the atmosphere.
- (D) the difference in the H–O bond energy in $H_2O(l)$ compared to $H_2O(g)$.
- (E) none of these.

$$Cu_2O(s) \rightarrow Cu(s) + CuO(s)$$
 $\Delta H^0 = +11 \text{ kJ}$

Calculate the standard enthalpy of formation of CuO(s).

- (A) 166 kJ

- (B) -299 kJ (C) +299 kJ (D) +155 kJ (E) -155 kJ

- (A) evaporation of 1 mol of CCl₄(l)
- (B) mixing 5 mL of ethanol with 25 mL of water
- (C) raising the temperature of 100 g of Cu from 275 K to 295 K
- (D) compressing 1 mol of Ne at constant temperature from 1.5 atm to 0.5 atm
- (E) grinding a large crystal of KCl to powder

20. For the reaction A + B \rightarrow C + D, ΔH° = +40 kJ and ΔS° = +50 J/K. Therefore, the reaction under standard conditions is

- (A) spontaneous at temperatures less than 10 K.
- (B) spontaneous at temperatures greater than 800 K.
- (C) spontaneous only at temperatures between 10 K and 800 K.
- (D) spontaneous at all temperatures.
- (E) nonspontaneous at all temperatures.

普通化學 科目

類組別 A6 共二頁 第人頁

21. For which of the following processes would ΔS° be expected to be most positive?

 $(A) O_2(g) + 2H_2(g) \rightarrow 2H_2O(g)$

(B) $H_2O(l) \to H_2O(s)$ (C) $N_2O_4(g) \to 2NO_2(g)$

(D) $2NH_4NO_3(s) \rightarrow 2N_2(g) + O_2(g) + 4H_2O(g)$

- (E) $NH_3(g) + HCl(g) \rightarrow NH_4Cl(g)$
- 22. Which of the following is the best reducing agent?

$$Cl_2 + 2e^- \rightarrow 2Cl^ E^{\circ} = 1.36 \text{ V}$$

$$Mg^{2+} + 2e^- \rightarrow Mg$$
 $E^\circ = -2.37 \text{ V}$

 $2H^{+} + 2e^{-} \rightarrow H_{2}$ $E^{\circ} = 0.00 \text{ V}$

 $(A) Cl_2$

(B) H_2 (C) Mg (D) Mg^{2+}

23. The standard potential for the reaction $Zn + 2Ag^+ \rightarrow Zn^{2+} + 2Ag$ is 1.56 V. Given that the standard reduction potential for $Ag^+ + e^- \rightarrow Ag$ is 0.80 V, determine the standard reduction potential for $Zn^{2+} + 2e^ \rightarrow$ Zn.

(A)-0.76 V

- (B) 0.04 V
- (C) 0.76 V
- (D) 2.36 V
- (E) none of these
- 24. The standard reduction potentials are as follows:

 $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$

$$MnO_4 + 8H' + 5e^- \rightarrow Mn^{2'} + 4H_2O$$

$$E^{\circ} = 1.51 \text{ V}$$

$$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2 Cr^{3+} + 7H_2O \quad E^\circ = 1.33 V$$

How many electrons are transferred in the balanced reaction (that is, what will be the value of n in the

Nernst equation)?

- (A) 5
- (B) 6
- (C) 12
- (D) 30
- (E)36
- 25. From the following list of observations, choose the one that most clearly supports the conclusion that atoms contain electrons.
 - (A) the emission spectrum of hydrogen
 - (B) the photoelectric effect
 - (C) the scattering of alpha particles by metal foil
 - (D) diffraction
 - (E) cathode "rays"
- 26. What is the electron configuration of Cr^{3+} ?

- (A) [Ar] $4s^23d^1$ (B) [Ar] $4s^13d^2$ (C) [Ar] $3d^3$ (D) [Ar] $4s^23d^4$
- (E) none of these
- 27. An element has the electron configuration [Kr] $4d^{10}5s^25p^2$. The element is a(n)

 - (A) nonmetal (B) transition metal (C) lanthanide (D) metal
- (E) chalcogenide
- 28. Which element listed below has the highest electronegativity?
 - (A) K (B) Rb (C) Te (D) I (E) Br

- 29. The molecule XCl₅⁻ has a square pyramidal shape. Which of the following atoms could be X?

- (A) S (B) Xe (C) O (D) P (E) At least two of these atoms could be X.

台灣聯合大學系統 102 學年度學士班轉學生考試命題紙

普通化學 科目

類組別

30. Which molecule or ion violates the octet rule?

- (A) H_2O (B) I_3^-
- (C) NO_3
- (D) PF₃ (E) none of these

31. What is the hybridization of the central atom in PCl₄⁺?

- (A)sp

- (B) sp^2 (C) sp^3 (D) dsp^3 (E) d^2sp^3

- (A) A triple bond is composed of two σ bonds and one π bond.
- (B) σ bonds result from the head-to-head overlap of atomic orbitals.
- (C) Free rotation may occur about a double bond.
- $(D)\pi$ bonds have electron density on the internuclear axis.
- (E) More than one of these statements are correct.

- (A) B_2 (B) B_2^{2-} (C) Li_2^+
- $(D) C_2$

$[NO]_0$	$[\mathrm{O}_2]_0$	Initial Rate
1×10^{18}	1×10^{18}	2.0×10^{16}
2×10^{18}	1×10^{18}	8.0×10^{16}
3×10^{18}	1×10^{18}	18.0×10^{16}
1×10^{18}	2×10^{18}	4.0×10^{16}
1×10^{18}	3×10^{18}	6.0×10^{16}

Which of the following is the correct rate law?

- (A) Rate = $k[NO][O_2]$ (B) Rate = $k[NO]^2$
- (C) Rate = $k[NO][O_2]^2$
- (D) Rate = $k[NO]^2[O_2]$ (E) Rate = $k[NO]^2[O_2]^2$

- (A) log [HI] vs. time (B) [HI] vs. time (C) ln [HI] vs. time
- (D) $[HI]^{1/2}$ vs. time
- (E) 1/[HI] vs. time

36. What is the overall order of a reaction with the following rate law?

Rate = $[A]^2 [B]^1 [C]^0$

- (A)0
- (B) 1
- (C) 2
- (D) 3 (E) 4
- 37. Which intermolecular force is the strongest?
- (A) dipole-dipole interactions
- (B) hydrogen bonding
- (C) polar covalent bonds

- (D) London dispersion forces
- (E) ionic bonding

科目_	普通化學	類組別	A6	 共 1 頁 第 0 頁
				*請在答案卡內作答

- 38. In the unit cell of sphalerite, Zn²⁺ ions occupy half the tetrahedral holes in a face-centered cubic lattice of S^{2-} ions. What is the number of formula units of ZnS in the unit cell?
 - (A)2 (B)3 (C)4 (D)6 (E)8
- 39. In which of the following processes is energy evolved as heat?
 - (A) sublimation (B) crystallization
- (C) melting
- (D) vaporization
- (E) none of these

- 40. A lquid-liquid solution is called an ideal solution if
 - I. it obeys PV = nRT.
 - II. it obeys Raoult's law.
 - III. solute-solute, solvent-solvent, and solute-solvent interactions are very similar.
 - IV. solute-solute, solvent-solvent, and solute-solvent interactions are quite different.
 - (A) I, II, III
- (B) II, III
- (C) I, II, IV
- (D) II, IV
- (E) I, II

- 41. Which of the following statements is(are) true?
 - (A) The rate of dissolution of a solid in a liquid always increases with increasing temperature.
 - (B) The solubility of a solid in a liquid always increases with increasing temperature.
 - (C) According to Henry's law, the amount of gas dissolved in a solution is directly proportional to the pressure of the gas above the liquid.
 - (D) Two of these statements are true.
 - (E) All of these statements are true.
- 42. A solute added to a solvent raises the boiling point of the solution because
 - (A) the solute particles lower the solvent's vapor pressure, thus requiring a higher temperature to cause
 - (B) the temperature to cause boiling must be great enough to boil not only the solvent but also the solute.
 - (C) the solute particles raise the solvent's vapor pressure, thus requiring a higher temperature to cause boiling.
 - (D) the solute increases the volume of the solution, and an increase in volume requires an increase in the temperature to reach the boiling point (derived from PV = nRT).
 - (E) Two of the above are correct.
- 43. In which group are the elements listed in correct order of increasing first ionization energy?
 - (A)Na > P > Cl
- (B) Cs > Na > K (C) K > Ca > Ge (D) Al > Si > P
- (E) Cs < Rb < Na

- 44. Which metal ion has a d⁶ electron configuration?
 - (A) Mn^{2+} (B) Co^{3+} (C) Ni^{2+} (D) Ti^{2+} (E) Fe^{3+}
- 45. Which of the following coordination compounds will form a precipitate when treated with an aqueous solution of AgNO₃?
 - (A) $[Cr(NH_3)_3Cl_3]$ (B) $Na_3[CrCl_6]$
- (C) [Cr(NH₃)₆]Cl₃
- (D) $Na_3[Cr(CN)_6]$
- (E) two of these

台灣聯合大學系統 102 學年度學士班轉學生考試命題紙

科目_	普通化學	類組別	A6	共 頁 第 頁
				*請在答案卡內作答

- 46. The spectrochemical series is $\Gamma < Br^- < Cl^- < F^- < OH^- < H_2O < NH_3 < en < NO_2^- < CN^-$ Which of the following complexes will absorb visible radiation of the highest energy (shortest wavelength)? (B) $[Co(I)_6]^{3-}$ (C) $[Co(OH)_6]^{3-}$ (D) $[Co(en)_3]^{3+}$
 - $(A) [Co(H_2O)_6]^{3+}$

- (E) $[Co(NH_3)_6]^{3+}$
- 47. Which of the following processes increases the atomic number by 1?
 - (A) gamma-ray production
- (B) alpha production
- (C) neutron-particle production

- (D) proton production
- (E) beta-particle production
- 48. Vibrational transitions in molecules typically require energies that correspond to the _____ region of the electromagnetic spectrum.
 - (A)UV
- (B) visible
- (C) IR
 - (D) X-ray
- (E) microwave
- 49. Which of the following is not a structural isomer of 1-pentene?
 - (A)2-pentene
- (B) 1-methyl-cyclobutene
- (C) cyclopentane

- (D) 2-methyl-2-butene
- (E) 3-methyl-1-butene
- 50. Identify the type of organic compound shown:

- (A) ester
- (B) aldehyde
- (C) amine
- (D) carboxylic acid
- (E) ketone

1	,		B = Sc	olids	Hg :	= Liquid	ls	Kr = Ga	ises	Prn =	Pm = Not found in nature						18
1 H 1.00794	2											13	14	15	16	17	2 He 4.002602
3 Li 6.941	4 Be 9.012182											5 B 10.811	C 12.0107	7 N 14.00674	8 O 15.9994	9 F 18,9984032	10 Ne 20.1797
11 Na 22,989770	12 Mg 24,3050	3	4	5	6	7	8	9	10	11	12	13 Al 26.581538	14 Si 28.0855	15 P 30.973761	16 S 32.066	17 C 35.4527	18 Ar 39.948
19 K 39.0983	20 Ca 40,078	21 SC 44.955910	22 Ti 47.867	23 V 50.9415	· 24 Cr 51.9961	25 Mn 54.938049	26 Fe 55.845	27 CO 58,933200	28 Ni 58.6534	29 Cu 63.545	30 Zn 65.39	31 Ga 69.723	32 Ge . 72.61	33 As 74.92160	34 Se 78.96	35 Br 79,504	36 Kr 83.80
37 Rb 85,4678	38 Sr 87.62	39 Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95,94	43 TC (98)	44 Ru 101,07	45 Rh 102.90550	46 Pd 106.42	47 Ag 196.56655	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 126,90447	54 Xe 131.29
55 CS 132,90545	56 Ba 137.327	71 Lu 174,967	72 Hf 178.49	73 Ta 180.94.79	74 W 183.84	75 Re 186.207	76 Os 190,23	77 r 192.217	78 Pt 195.078	79 Au 196.56655	80 Hg 200.59	81 TI 204.3833	82 Pb 207.2	83 Bi 208,58038	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	103 Lr (262)	104 Rf (261)	105 Db (262)	106 Sg .(263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 Ds (269)	111 Rg (272)	112 Cn (277)	113 Uut (277)	114 Uuq (277)	115 Uup (277)	116 Uuh		118 Uuo (277)

57 La 138,9055	58 Ce 140.116	59 Pr 140.50765	60 Nd 144.24	61 Pm (145)	62 Sm 150,36	63 Eu 151.964	64 Gd 157.25	65 Tb 158.92534	66 Dy 162.50	67 Ho 164.93032	68 Er 167.26	69 Tm 168.93421	70 Yb 173,04
AC	% Th	91 Pa	92 1 I	93 N.S	94 D. (95	96 Cm	97 D.L	98	99	100	101	102
232.0381	232,0381	231.035888	238,0289	Np (237)	Pu (244)	Am (243)	(247)	Bk (247)	(251)	(252)	FM (257)	Md (258)	NO (259)

